## CLASS 12 - CHEMISTRY FORMULA BOOK

## THE SOLID STATE

Calculation of number of particles per unit cell

- Contribution of each atom present on the corner $=\frac{1}{8}$
- Contribution of each atom present on the face $=\frac{1}{2}$
- Contribution of each atom present on the edge centre $=\frac{1}{4}$
- Contribution of each atom present at the body centre = 1
Relation between radius ( $r$ ) of a void and the radius ( $R$ ) of the spheres in the close packing
- Radius ( $r$ ) of the tetrahedral void $=0.225 R$
- Radius $(r)$ of the octahedral void $=0.414 R$

Radius ratio rules

| Radius ratio <br> $\left(\boldsymbol{r}_{+} / \boldsymbol{r}_{-}\right)$ | Coordination <br> Number | Structural <br> arrangement |
| :--- | :---: | :--- |
| $0.155-0.225$ | 3 | Planar <br> triangular |
| $0.225-0.414$ | 4 | Tetrahedral |
| $0.414-0.732$ | 6 | Octahedral |
| $0.732-1$ | 8 | Body-centred |
| cubic |  |  |

Relation between no. of voids and spheres in the packing

- No. of octahedral voids $=$ No. of atoms (ions) present in the close packing.
- No. of tetrahedral voids $=2 \times$ No. of atoms (ions) in the close packing

$$
=2 \times \text { No. of octahedral voids. }
$$

(T) Relation between nearest neighbour distance ( $d$ ) and edge ( $a$ ) of cubic unit cell

- Simple
- Body-centred

$$
d=a
$$

$$
d=\frac{\sqrt{3}}{2} a=0.866 a
$$

- Face-centred

$$
d=\frac{a}{\sqrt{2}}=0.707 a
$$

Relation between atomic radius $r\left(=\frac{d}{2}\right.$ for pure elements) and edge (a) of cubic unit cell

| Simple | Body-centred | Face-centred |
| :---: | :---: | :---: |
| $r=\frac{a}{2}$ | $r=\frac{\sqrt{3}}{4} a$ | $r$ $=\frac{a}{2 \sqrt{2}}$ <br>  $=0.433 a$ |
|  | $=0.3535 a$ |  |

Calculation of density of a cubic crystal from its edge

$$
\rho=\frac{Z \times M}{a^{3} \times N_{0} \times 10^{-30}} \mathrm{~g} / \mathrm{cm}^{3}
$$

- For elements:
$Z=$ no. of atoms/unit cell (1 for simple, 2
for $b c c$ and 4 for $f c c$ )
$M=$ atomic mass of the element
$a=$ edge of the unit cell in pm
$N_{0}=$ Avogadro's number.
- For ionic compounds:
$Z=$ no. of formula units in one unit cell e.g. 4 for NaCl and $\mathrm{ZnS}, 1$ for CsCl , etc.
$M=$ formula mass (molecular mass) of the compound
$a=$ edge $=2 \times$ distance between $\mathrm{Na}^{+}$and
$\mathrm{Cl}^{-}$in case of NaCl .
Ionic and covalent radii :
- Interionic distance in $A^{+} B^{-}=r_{A+}+r_{B-}$
- Bond length of a covalent molecule
$(A-A)=2 \times r_{A}$
- Bond length of a covalent molecule

$$
(A-B)=r_{A}+r_{B}
$$

No. of cation vacancies: Each ion like $\mathrm{Sr}^{2+}$ when introduced into $\mathrm{Na}^{+} \mathrm{Cl}^{-}$creates one cation vacancy because for electrical neutrality, one $\mathrm{Sr}^{2+}$ replaces two $\mathrm{Na}^{+}$ions.

## SOLUTIONS

- \% by wt. $=\frac{\mathrm{wt} \text {. of the solute in } \mathrm{g}}{\mathrm{wt} \text {. of the solution in } \mathrm{g}} \times 100$
- $\%$ by wt./vol. $=\frac{\mathrm{wt} \text {. of solute in } \mathrm{g}}{\text { Vol. of solution in } \mathrm{cc}} \times 100$
- $\%$ by volume $=\frac{\text { Vol. of solute in cc }}{\text { Vol. of solution in cc }} \times 100$
- Strength of a solution $=\frac{\mathrm{wt} \text {. of the solution in } \mathrm{g}}{\text { Vol. of solution in litres }}$
- Molarity $=\frac{\text { Moles of the solute }}{\text { Vol. of solution in cc }} \times 1000$
where moles $=\frac{\text { Mass of the solute in } g}{\text { Molecular mass of the solute }}$
- Normality $=\frac{\text { g. Eq. of the solute }}{\text { Vol. of solution in cc }} \times 1000$
where g eq. $=\frac{\text { Mass of the solute in } g}{\text { Eq. mass of the solute }}$
- Normality of a solution $=$ Molarity $\times \frac{\text { Mol. mass }}{\text { Eq. mass }}$
- Normality of an acid $=$ Molarity $\times$ Basicity
- Normality of a base $=$ Molarity $\times$ Acidity
- Molality $=\frac{\text { Moles of solute }}{\text { Mass of the solvent ing }} \times 1000$
- Mole fraction of solute in solution

$$
\left(x_{2}\right)=\frac{n_{2}}{n_{1}+n_{2}}=\frac{w_{2} / M_{2}}{w_{1} / M_{1}+w_{2} / M_{2}}
$$

- Mole fraction of solvent in solution

$$
\left(x_{1}\right)=\frac{n_{1}}{n_{1}+n_{2}}=\frac{w_{1} / M_{1}}{w_{1} / M_{1}+w_{2} / M_{2}}
$$

where $w_{1}, M_{1}$ are mass and molecular mass of solvent and $w_{2}, M_{2}$ for the solute. $x_{1}+x_{2}=1$.

- In general, for a solution containing many components ( $A, B, C \ldots . .$.$) , mole fraction of A$.
$\left(x_{\mathrm{A}}\right)=\frac{n_{A}}{n_{A}+n_{B}+n_{C}+\ldots .}$ and so on.
$x_{A}+x_{B}+\ldots=1$
- Mass fraction of component $A\left(x_{A}\right)=\frac{w_{A}}{w_{A}+w_{B}}$
- Mass fraction of component $B\left(x_{B}\right)=\frac{w_{B}}{w_{A}+w_{B}}$
$x_{A}+x_{B}=1$
- Parts per million (ppm) of substance $A$ $=\frac{\text { Mass of } A}{\text { Mass of solution }} \times 10^{6}$ or $\frac{\text { Vol. of } A}{\text { vol. of solution }} \times 10^{6}$
- Normality equation (for dilution of a solution or for a complete reaction between two solutions)

$$
N_{1} V_{1}=N_{2} V_{2}
$$

- Molarity equation (for dilution of a solution)

$$
M_{1} V_{1}=M_{2} V_{2}
$$

- If two non-reacting solutions of different normalities are mixed, the normality of the final solution can be calculated using relations

$$
N_{1} V_{1}+N_{2} V_{2}=N_{3} V_{3}
$$

ㅁ According to Henry's law : $p_{A}=k_{H} x_{A}$ where $k_{H}=$ Henry's constant

- According to Raoult's law, for a solution containing volatile components A and B ,
$p_{A}=x_{A} p_{A}^{\circ}$ and $p_{B}=x_{B} p_{B}{ }^{\circ}$.
$\mathrm{P}_{\text {Total }}=p_{A}+p_{B}=x_{A} p_{A}{ }^{\circ}+x_{B} p_{B}{ }^{\circ}$

$$
=\left(1-x_{B}\right) p_{A}{ }^{\circ}+x_{B} p_{B}{ }^{0}=\left(p_{B}{ }^{0}-p_{A}{ }^{\circ}\right) x_{B}+p_{A}{ }^{0} .
$$

Mole fraction of $A$ in the vapour phase

$$
=\frac{p_{\mathrm{A}}}{p_{\mathrm{A}}+p_{\mathrm{B}}}
$$

- Raoult's law for non-volatile solutes :
$\frac{p^{\circ}-p_{\mathrm{s}}}{p^{\circ}}=\frac{n_{2}}{n_{1}+n_{2}} \approx \frac{n_{2}}{n_{1}}$
(if solution is dilute i.e. $<5 \%$ )
$=\frac{w_{2} / M_{2}}{w_{1} / M_{1}+w_{2} / M_{2}} \approx \frac{w_{2} / M_{2}}{w_{1} / M_{1}}$
(if solution is dilute)
- Osmotic pressure, $\pi=\frac{n}{V} R T$ where $n=\frac{w}{M}$
- For isotonic solutions, $\pi_{1}=\pi_{2}$ which means at the same temp. $C_{1}=C_{2}$.
- Elevation in boiling point, $\Delta T_{b}=K_{b} m$ where $K_{b}=$ molal elevation constant and $m=$ molality of the solution.
- Units of $K_{b}=\Delta T_{b} / m=$ deg. $/$ molality $=\frac{\mathrm{K}}{\mathrm{mol} \mathrm{kg}^{-1}}$

$$
=\mathrm{K} \mathrm{~kg} \mathrm{~mol}^{-1} .
$$

- $\quad M_{2}=\frac{1000 K_{b} w_{2}}{w_{1} \Delta T_{b}}$ if $K_{b}$ is molal elevation constant per 1000 g of the solvent.
However if $K_{b}$ is per 100 g of the solvent,
$M_{2}=\frac{100 K_{b} w_{2}}{w_{1} \Delta T_{b}}$
- Depression in freezing point, $\Delta T_{f}=K_{f} m$ where $K_{f}=$ molal depression constant and $m=$ molality of the solution.
- Units of $K_{f}=$ same as those of $K_{b}$.
- $M_{2}=\frac{1000 K_{f} w_{2}}{w_{1} \Delta T_{f}}$ if $K_{f}$ is per 1000 g of the solvent or $M_{2}=\frac{100 K_{f} w_{2}}{w_{1} \Delta T_{f}}$ if $K_{f}$ is per 100 g of the solvent.
- $K_{b}=\frac{R T_{0}^{2}}{1000 l_{v}}=\frac{M_{1} R T_{0}^{2}}{1000 \Delta H_{v}}$
where $T_{0}=$ boiling point of the liquid (pure solvent) $l_{v}=$ latent heat of vaporisation per g of the solvent $\Delta H_{v}=$ latent heat of vaporisation per mole of the solvent.
$M_{1}=$ molecular mass of the solvent.
$R=$ gas const. $=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ if $I_{v}$ or $\Delta H_{v}$ is in calories.
- $K_{f}=\frac{R T_{0}^{2}}{1000 l_{f}}=\frac{M_{1} R T_{0}^{2}}{1000 \Delta H_{f}}$
where $T_{0}=$ freezing point of the liquid (pure solvent) $l_{f}=$ latent heat of fusion per g of the solvent
$\Delta H_{f}=$ latent heat of fusion per mole of the solvent
$M_{1}=$ molecular mass of the solvent
$R=$ gas const. $8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
- Van't Hoff factor $(i)=$

Observed value of Colligative property
Calculated value of Colligative property
$=\frac{\text { Calculated mol. mass }}{\text { Observed mol. mass }}=\frac{M_{c}}{M_{0}}$
$\left(\because\right.$ Mol mass $\left.\propto \frac{1}{\text { Colligative property }}\right)$

- For solutes undergoing dissociation/ association
$\Delta T_{b}=i K_{b} m, \Delta T_{f}=i K_{f} m, \pi=i \frac{n}{V} R T$
- For an electrolyte $A_{x} B_{y}$ undergoing dissociation with degree of dissociation $\alpha$.

$$
A_{x} B_{y} \rightleftharpoons x A^{+}+y B^{-}
$$

Before dissociation 1 mole 0
After dissociation $1-\alpha \quad x \alpha \quad y$ a
Total $=1-\alpha+x \alpha+y \alpha=\alpha(x+y-1)+1$.
$i=\alpha(x+y-1)+1$ or $\alpha=\frac{i-1}{x+y-1}$

- For a solute $A$ undergoing association

$$
n A \rightleftharpoons A_{n}
$$

Initial 1 mole
After assoc. $1-\alpha \quad(\alpha / n)$
Total $=1-\alpha+\frac{\alpha}{n}$
$i=1-\alpha+\frac{\alpha}{n}$ or $\alpha=\frac{i-1}{n-1}$

## ELECTROCHEMISTRY

- According to Ohm's law (Resistance),

$$
R=\frac{V}{I}=\frac{\text { volt }}{\text { amperes }}=\Omega(\mathrm{ohm})
$$

Conductance $(C)=\frac{1}{R}=\mathrm{Ohm}^{-1}$ or Mho or Siemens (S)

- $\quad R=\rho \times \frac{l}{a}$
where $l=$ distance between electrodes in cm , $a=$ area of cross-section of electrodes in $\mathrm{cm}^{2}$ $\rho=$ specific resistance, where $\frac{l}{a}=\frac{R}{\rho}$ cell constant $\left(\mathrm{cm}^{-1}\right)$
- Specific conductance, $\kappa=\frac{1}{\rho}$ or $\kappa=\frac{1}{R} \cdot \frac{l}{a}=C \times$ cell constant

$$
=\mathrm{ohm}^{-1} \mathrm{~cm}^{-1} \text { or } \mathrm{S} \mathrm{~cm}^{-1}
$$

- Equivalent conductance,

$$
\Lambda_{e q}=\kappa \times V=\frac{\kappa \times 1000}{C_{e q}}=\frac{\kappa \times 1000}{\text { normality }}
$$

Unit $=$ ohm $^{-1} \mathrm{~cm}^{2}$ g equi ${ }^{-1}$ or $S \mathrm{~cm}^{2}$ g equi ${ }^{-1}$

- Molar conductance,

$$
\Lambda_{m}=\kappa \times V=\frac{\kappa \times 1000}{C_{m}}=\frac{\kappa \times 1000}{\text { molarity }}
$$

Unit $=\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ or $\mathrm{S} \mathrm{cm} \mathrm{mol}^{-1}$

- For a sparingly soluble salt e.g. $\mathrm{AgCl}, \mathrm{BaSO}_{4^{\prime}}$ etc.

Solubility $\left(\mathrm{mol} \mathrm{l}^{-1}\right)=\frac{\kappa \times 1000}{\Lambda^{\circ}{ }_{m}}$

- Debye Huckel-Onsager equation is $\Lambda_{m}=\Lambda_{m}^{\circ}-b \sqrt{C} \quad\left[\Lambda_{m}=\right.$ molar conductivity at $C$ concentration, $\Lambda_{m}^{\circ}$ is molar conductivity at infinite dilution, $b=$ constant.]
- According to Kohlrausch's law molar conductance $\Lambda_{m}^{\mathrm{o}}=x \lambda_{c}^{\mathrm{o}}+y \lambda_{a}^{0}$ where $\lambda^{\circ}{ }_{c}$ and $\lambda^{\circ}{ }_{a}$ are molar conductivities of cation and anion respectively.
Equivalent conductance at infinite dilution

$$
\Lambda_{e q}^{\infty}=\lambda_{c}^{0}+\lambda_{a}^{o}
$$

- Degree of dissociation $\alpha=\frac{\Lambda_{m}^{c}}{\Lambda^{\circ}{ }_{m}}$
$=\frac{\text { Molar conductance at a given concentration }}{\text { Molar conductance at infinite dilution }}$
- Molar conductivity at infinite dilution for weak electrolytes
e.g. $\Lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=\Lambda_{\mathrm{CH}_{3} \mathrm{COONa}}^{\circ}+\Lambda_{\mathrm{HCl}}^{\circ}-\Lambda^{\circ}{ }_{\mathrm{NaCl}}$
- Faraday's first law: Weight of the substance liberated at anode
$w=Z I t=Z Q, Z=$ electrochemical equivalent, $I=$ current passed for time $t$ seconds
- Faraday's second law :

$$
\frac{\text { wt. of metal } A}{\text { wt. of metal } B}=\frac{\text { Eq. wt. of } A}{\text { Eq. wt. of } B}
$$

- $1 \mathrm{~F}=96500 \mathrm{C}$
- Electrochemical equivalent of a substance

$$
=\frac{\text { atomic weight }}{n \times 96500}=\frac{\text { Eq. wt. of the substance }}{96500}
$$

- $\quad E_{\text {cell }}=E^{\mathrm{o}}{ }_{\text {cathode }}-E_{\text {anode }}^{\mathbf{o}}$
- $\quad E_{\text {cell }}=E_{\text {cell }}^{\mathrm{o}}-\frac{0.0591}{n} \log \frac{\text { [Reduced state] }}{\text { [Oxidised state] }}$
(G) For the cell : $a A+b B \rightarrow x X+y Y$;
- $E_{\text {cell }}=E_{\text {cell }}^{\mathrm{o}}-\frac{0.0591}{n} \log \frac{[X]^{x}[Y]^{y}}{[A]^{a}[B]^{b}}$ at $25^{\circ} \mathrm{C}$
- $\Delta G^{\circ}=-n F E^{\circ}$ (in standard state)
- $\Delta G^{\circ}=-R T \ln K=-2.303 R T \log K$
- $E_{\text {cell }}^{\mathrm{o}}=\frac{R T}{n F} \ln K=\frac{2.303 R T}{n F} \log K$

$$
=\frac{0.0591}{n} \log K \text { at } 25^{\circ} \mathrm{C}
$$

Thermodynamic efficiency $\eta=\frac{\Delta G}{\Delta H}=-\frac{n F E}{\Delta H}$

- $\Delta G_{3}^{\mathrm{o}}=\Delta G_{1}^{\mathrm{o}}+\Delta G_{2}^{\mathrm{o}}$ (when different number of electrons are involved)
$-n_{3} F E_{3}^{\mathrm{o}}=-n_{1} F E_{1}^{\mathrm{o}}-n_{2} F E_{2}^{\mathrm{o}}$
$n_{3} E_{3}^{\mathrm{o}}=n_{1} E_{1}^{\mathrm{o}}+n_{2} E_{2}^{\mathrm{o}}$
or $E_{3}^{\mathrm{o}}=\frac{n_{1} E_{1}^{\mathrm{o}}+n_{2} E_{2}^{\mathrm{o}}}{n_{3}}$
If $n_{1}=n_{2}=n_{3}, E_{3}^{\circ}=E_{1}^{\circ}+E_{2}^{\circ}$
- $E_{\mathrm{H}^{+} / \mathrm{H}_{2}}=E_{\mathrm{H}^{+} / \mathrm{H}_{2}}^{\mathrm{o}}-0.0591 \log \frac{1}{\left[\mathrm{H}^{+}\right]}$
$=0-0.0591\left(-\log \left[\mathrm{H}^{+}\right]\right)=-0.0591 \mathrm{pH}$
$\because \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
As pH of the solution increases, electrode potential of hydrogen electrode decreases.
- For concentration cell $\mathrm{Zn}\left|\underset{\left(C_{1}\right)}{\mathrm{Zn}^{++}} \| \underset{\left(C_{2}\right)}{\mathrm{Zn}^{++}}\right| \mathrm{Zn}$

$$
E_{\text {cell }}=\frac{0.0591}{2} \log \left(\frac{C_{2}}{C_{1}}\right)
$$

For gas concentration cell

$$
\begin{gathered}
\mathrm{Pt} \underset{P_{1}}{\left(\mathrm{H}_{2}\right)}|\mathrm{HCl}| \underset{P_{2}}{\mathrm{Pt}\left(\mathrm{H}_{2}\right)} \\
E_{\text {cell }}=0.0591 \log \frac{P_{2}}{P_{1}}
\end{gathered}
$$

T Relation between free energy and cell potential

| Type of reaction | $\Delta G$ | $E$ | Type of cell |
| :--- | :--- | :--- | :--- |
| Spontaneous | -ve | +ve | Galvanic |
| Non-spontaneous | +ve | -ve | Electrolytic <br> Equilibrium <br> Dead <br> battery |

## CHEMICAL KINETICS

For the reaction $x \rightarrow y$

- Rate of disappearance of $x=-\frac{d[x]}{d t}$
a Rate of formation of $y=\frac{d[y]}{d t}$
- For the reaction $x+y \rightarrow 2 z$
- rate $=-\frac{d x}{d t}=-\frac{d y}{d t}=\frac{1}{2} \frac{d z}{d t}$
- For a reversible reaction at equilibrium, $\left(\frac{d x}{d t}\right)_{\text {forward }}=\left(\frac{d x}{d t}\right)_{\text {backward }}$
The overall rate of reaction,

$$
\frac{d x}{d t}=\left(\frac{d x}{d t}\right)_{\text {forward }}-\left(\frac{d x}{d t}\right)_{\text {backward }}=0
$$

- Average rate $=\frac{\text { Change in concentration }}{\text { Time interval }}=\frac{\Delta x}{\Delta t}$
- For zero order reactions, $k=\frac{x}{t} ; \quad t_{1 / 2}=\frac{a}{2 k}$
- For reactions of 1st order, $k=\frac{2.303}{t} \log \frac{a}{a-x}$ where $a$ is the initial concentration of the reactant and $t$ is the time in which amount $x$ has reacted.
- Expression for half-life period for reactions of 1 st order $t_{1 / 2}=\frac{0.693}{k}$.
as $T=n \times t_{1 / 2} \quad$ where $T=$ total time at $T=T_{75} x=3 / 4 a \quad(a-x)=a / 4$

$$
\begin{aligned}
\therefore & T_{75}=2 \times T_{50} \\
& T_{99.9}=10 \times T_{50}
\end{aligned}
$$

- For a second order reaction $k=\frac{1}{t} \cdot \frac{x}{a(a-x)}$
- Half-life period for a second order reaction $t_{1 / 2}=\frac{1}{k \cdot a}$
a For a third order reaction $k=\frac{1}{t} \cdot \frac{x}{2 a^{2}} \frac{(2 a-x)}{(a-x)^{2}}$ and half-life period for the third order reaction $t_{1 / 2}=3 / 2 k a^{2}$
- General expression for half-life period of a reaction of $n$th order $t_{1 / 2} \propto\left[A_{0}\right]^{1-n}$ or $t_{1 / 2} \propto \frac{1}{\left[A_{0}\right]^{n-1}}$
- General expression for time taken for $n^{\text {th }}$ fraction of a reaction of 1st order to complete
(by putting $x=\frac{a}{n}, t=t_{1 / n}$ );
$t_{1 / n}=\frac{2.303}{k} \log \frac{n}{n-1}$
- Amount of the substance left after $n$ halflives $=\frac{[A]_{0}}{2^{n}}$
- Arrhenius eqn. for effect of temperature on rate constant $k=A e^{-E_{a} / R T}$ or $\ln k=\ln A-\frac{E_{a}}{R T}$ or $\log k=\log A-\frac{E_{a}}{2.303 R T}$
or, $\frac{d \ln k}{d T}=\frac{E_{a}}{R T^{2}}$, where $k$ is rate constant, pre-exponential factor $A$ is collision frequency, $E_{a}$ is activation energy, $T$ is temperature in K and $R$ is gas constant. If $k_{1}$ and $k_{2}$ are rate constants at temperatures $T_{1}$ and $T_{2}$ respectively, then
$\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$


## SURFACE CHEMISTRY

Freundlich adsorption isotherm

$$
\begin{aligned}
\left(\frac{x}{m}\right) & =k(p)^{1 / / n} \\
\text { or }\left(\frac{x}{m}\right) & =k(c)^{1 / n}
\end{aligned}
$$

where, $x=$ amount of adsorbate
$m=$ gram of adsorbent at pressure
$c=$ concentration
$k$ and $n$ are constant, $n>1$.

- Langmuir adsorption isotherm,

$$
\frac{x}{m}=\frac{a P}{1+b P}
$$

where $a$ and $b$ are constants. $x / m$ and $P$ are the terms similar to those expressed in Freundlich isotherm.

- At low pressure, $\frac{x}{m}=a P$
- At high pressure, $\frac{x}{m}=\frac{a}{b}$


## GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

(a) Summary of the Extraction of Metals

| Meda | Main Occurrenœ | Main Method of Extraction |
| :---: | :---: | :---: |
| Magnesium | Carnallite, $\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | Electrolysis of fused $\mathrm{MgCl}_{2}$ with KCl |
| Aluminium | Bauxite, $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | Electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in molten $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ (cryolite) |
| Iron | Haematite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ Magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$ | Reduction of oxide with carbon monoxide $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ |
| Copper | Copper pyrites, $\mathrm{CuFeS}_{2}$ Cuprite, $\mathrm{Cu}_{2} \mathrm{O}$ | Partial oxidation of sulphide ore $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$ |
| Tin | Cassiterite, $\mathrm{SnO}_{2}$ | Reduction of $\mathrm{SnO}_{2}$ with carbon $\mathrm{SnO}_{2}+2 \mathrm{C} \longrightarrow \mathrm{Sn}+2 \mathrm{CO}$ |
| Lead | Galena, PbS | Reduction of PbO with carbon $\mathrm{PbO}+\mathrm{C} \longrightarrow \mathrm{~Pb}+\mathrm{CO}$ |
| Silver | Argentite, $\mathrm{Ag}_{2} \mathrm{~S}$ Native silver | $\begin{aligned} & \text { Hydrometallurgy } \\ & \qquad \mathrm{Ag}_{2} \mathrm{~S}+4 \mathrm{NaCN} \longrightarrow 2{\mathrm{NaAg}(\mathrm{CN})_{2}+\mathrm{Na}_{2} \mathrm{~S}}^{2 \mathrm{NaAg}^{2}(\mathrm{CN})_{2}+\mathrm{Zn} \xrightarrow{\longrightarrow} \mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}+2 \mathrm{Ag}} \end{aligned}$ |

(8) Important alloys and their components

| Alloy | Components | Alloy | Components |
| :--- | :--- | :--- | :--- |
| Brass | $\mathrm{Cu}+\mathrm{Zn}$ | Gun metal | $\mathrm{Cu}+\mathrm{Sn}+\mathrm{Zn}$ |
| Bronze | $\mathrm{Cu}+\mathrm{Sn}$ | Muntz metal | $\mathrm{Cu}+\mathrm{Zn}$ |
| Bell metal | $\mathrm{Cu}+\mathrm{Sn}$ | Magnalium | $\mathrm{Al}+\mathrm{Mg}$ |
| Coin alloys (red) | $\mathrm{Cu}+\mathrm{Zn}+\mathrm{Sn}$ | Solder | $\mathrm{Pb}+\mathrm{Sn}$ |
| Coin alloys (white) | $\mathrm{Cu}+\mathrm{Ag}+\mathrm{Zn}+\mathrm{Ni}$ | Type metal | $\mathrm{Pb}+\mathrm{Sb}+\mathrm{Sn}$ |
| Duralumin | $\mathrm{Al}+\mathrm{Cu}+\mathrm{Mg}+\mathrm{Mn}$ | Wood metal | $\mathrm{Bi}+\mathrm{Pb}+\mathrm{Sn}+\mathrm{Cd}$ |
| Electron | $\mathrm{Mg}+\mathrm{Zn}(95: 5)$ |  | $\left(\right.$ low m.pt. $\left.71^{\circ} \mathrm{C}\right)$ |
| German silver | $\mathrm{Cu}+\mathrm{Zn}+\mathrm{Ni}$ | Y alloy | $\mathrm{Cu}+\mathrm{Al}$ |

## THE P-BLOCK ELEMENTS (GROUP 15 TO 18)

- The electronic configuration of $p$-block elements is $n s^{2} n p^{3 \text { to } 6}$ ( $n=2$ to 7 ).
- Order of basicity is

$$
\mathrm{SbH}_{3}<\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}
$$

- The bond angle decreases in the order

$$
\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3} .
$$

- Oxyacid strength of nitrogen acids is

$$
\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}<\mathrm{HNO}_{2}<\mathrm{HNO}_{3}<\mathrm{HNO}_{4}
$$

- Order of acidic character of hydride is $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$.
- Bond angle in hydrides shows the following order. They have V-shape structure.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O} & >\mathrm{H}_{2} \mathrm{~S} \\
104.5^{\circ} & >\mathrm{H}^{\circ} 2^{\circ}
\end{aligned}
$$

- Reducing nature has order

$$
\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po} .
$$

- The increasing order of acidic nature of trioxide is

$$
\mathrm{TeO}_{3}<\mathrm{SeO}_{3}<\mathrm{SO}_{3}
$$

- The order of strength of oxyacids of lower oxidation state ( +4 ) is

$$
\mathrm{H}_{2} \mathrm{TeO}_{3}<\mathrm{H}_{2} \mathrm{SeO}_{3}<\mathrm{H}_{2} \mathrm{SO}_{3} .
$$

- The order of strength of oxyacids of higher oxidation state $(+6)$ is

$$
\mathrm{H}_{2} \mathrm{TeO}_{4}<\mathrm{H}_{2} \mathrm{SeO}_{4}<\mathrm{H}_{2} \mathrm{SO}_{4} .
$$

- All these elements form hydracids and order of strength of these acids is

$$
\mathrm{HF}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HI} .
$$

- The order of reducing character is

$$
\mathrm{HF}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HI} .
$$

- Acid strength of oxyacids with some halogens increases with increase in oxidation number of halogen atom.

$$
\mathrm{HOCl}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}>\mathrm{HClO}_{4} .
$$

- Among the oxyacids of different halogens acid strength decreases with increase in atomic number.
$\mathrm{HClO}>\mathrm{HBrO}>\mathrm{HIO} \quad$ (hypohalous acids)
$\mathrm{HClO}_{3}>\mathrm{HBrO}_{3}>\mathrm{HIO}_{3}$ (halic acids)
$\mathrm{HClO}_{4}>\mathrm{HBrO}_{4}>\mathrm{HIO}_{4} \quad$ (perhalic acids)
- Increasing order of electron affinity is

$$
\mathrm{I}<\mathrm{F}<\mathrm{Br}<\mathrm{Cl}
$$

- Increasing order of electronegativity is $\mathrm{I}<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}$.


## THE d-AND $f$-BLOCK ELEMENTS

- General electronic configuration of the transition elements is $(n-1) d^{1-10} n s^{0-2}$ where $n$ is the outermost shell.
- Magnetic moment $(\mu)=\sqrt{n(n+2)} \mathrm{BM}$
where $n=$ no. of unpaired electrons.
- The general electronic configuration of lanthanoids is

$$
4 f^{n}(n=1 \text { to } 14) 5 d^{0-1} 6 s^{2}
$$

- The electronic configuration of actinoids is $[R n] 5 f^{0-14}, 6 d^{0-2}, 7 s^{2}$ where $[R n]$ stands for radon core.


## COORDINATION COMPOUNDS

- The ligands can be arranged in ascending order of crystal field splitting $\Delta$ and this series is called the spectrochemical series.
$\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{NO}_{3}^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{EtOH}$ $<$ Oxalate $<\mathrm{H}_{2} \mathrm{O}<$ py $<\mathrm{NH}_{3}<e n<$
dipyridyl $<o$-phenanthroline $<\mathrm{NO}_{2}^{-}$ $<\mathrm{CN}^{-}<\mathrm{CO}$
- $\Delta_{t}=\frac{4}{9} \Delta_{o}$
- C CFSE $=(-0.4 x+0.6 y) \Delta_{\text {o }}$ where, $x=$ no. of electrons occupying $t_{28}$ orbitals
$y=$ no. of electrons occupying $e_{g}$ orbitals.
- $\mathrm{EAN}=$ Atomic number of the metal - No. of electrons lost in ion formation + No. of electrons gained from the donar atoms of the ligands.


## HALOALKANES AND HALOARENES

a The general formula is $R-X$ or $C_{n} \mathrm{H}_{2 n+1} X$ where $R=$ alkyl group; $X=\mathrm{Cl}, \mathrm{Br}$ or I .

- The order of reactivity of alkyl halides is $\mathrm{RI}>\mathrm{RBr}>\mathrm{RCl}$.
- For the same alkyl group, the boiling point of alkyl halides increase in the following order

$$
R-\mathrm{I}>R-\mathrm{Br}>R-\mathrm{Cl}>R-\mathrm{F}
$$

- Reactivity of halides towards $\mathrm{S}_{\mathrm{N}} 1$ mechanism is $3^{\circ}>2^{\circ}>1^{\circ}$.
- Reactivity of halides towards $\mathrm{S}_{\mathrm{N}} 2$ mechanism is $1^{\circ}>2^{\circ}>3^{\circ}$.
- The ease of formation of a Grignard reagent for a given alkyl group follows the order:

Iodide > Bromide > Chloride

- Total number of optical isomers $=2^{n}$ where $n=$ no. of asymmetric carbon atom.
(In general)
- Total number of optical isomers

$$
=2^{(n-1)}+2^{(n / 2-1)}
$$

where $n=$ No. of asymmetric carbon atom is even.

- Total number of optical isomers $=2^{(n-1)}$ $n=$ No. of asymmetric carbon atom is odd.


## ALCOHOLS, PHENOLS AND ETHERS

- Monohydric alcohols have general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{OH}$.
- Dihydric alcohols have general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}_{2}$ or $\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{OH})_{2}$.
- Order of reactivity for $\mathrm{O}-\mathrm{H}$ cleavage is Primary > Secondary $>$ Tertiary
- Order of reactivity for $\mathrm{C}-\mathrm{O}$ cleavage is Tertiary > Secondary > Primary
- Order of reactivity for alcohols $\mathrm{CH}_{3} \mathrm{OH}>1^{\circ}>2^{\circ}>3^{\circ}$
( Victor Meyer Test
- Primary alcohols produce a blood red colour.
- Secondary alcohols produce blue colour.
- Tertiary alcohols produce no colour.

Oxidation of alcohols

- Primary alcohol $\xrightarrow{[\mathrm{O}]}$ aldehydes $\xrightarrow{[\mathrm{O}]}$ carboxylic acids (same number of carbon atoms as the parent alcohol)
- Secondary alcohol $\xrightarrow{[\mathrm{O}]}$
$\xrightarrow[\begin{array}{l}\text { Ketones } \\ \begin{array}{l}\text { (same number } \\ \text { of carbon atom) }\end{array}\end{array} \begin{array}{l}\text { (less number } \\ \text { of carbon atoms) }\end{array}]{\text { Acids }}$
- Tertiary alcohol $\xrightarrow{[\mathrm{O}]}$ Ketones $\xrightarrow{[\mathrm{O}]}$ Acids
(Less number of carbon atoms as the parent alcohol)
Lucas reagent is a solution of HCl with $\mathrm{ZnCl}_{2}$, with Lucas reagent,
ㅁ Primary alcohol - no cloudness
- Secondary alcohol - cloudness in 5 minutes
- Tertiary alcohol - cloudness immediately

Nature of Different types of alcohols

| Types | Composition |
| :---: | :---: |
| Absolute alcohol | $100 \%$ ethanol <br> Rectified spirit <br> $95 \%$ alcohol + <br> $5 \%$ water <br> Denatured spirit <br> Methylated spirit |
|  | $95 \%$ ethanol + <br> $5 \%$ methanol <br> $90 \%$ ethanol + <br> $9 \%$ methanol + <br> $1 \%$ other poisonous <br> substances |
| Power alcohol | $80 \%$ petrol + <br> $20 \%$ absolute <br> alcohol |

( Reducing nature of different reagents

| Conversions | LiAlH $_{4} /$ ether | $\mathbf{N a B H}_{4} / \mathbf{C}_{2} \mathbf{H}_{5} \mathbf{O H}$ | $\mathbf{H}_{2} /$ Metal | $\mathbf{B}_{2} \mathbf{H}_{6} / \mathbf{T H F}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{CHO} \longrightarrow \mathrm{CH}_{2} \mathrm{OH}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $>\mathrm{CO} \longrightarrow \mathrm{CHOH}^{\longrightarrow}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\mathrm{COOH} \longrightarrow \mathrm{CH}_{2} \mathrm{OH}$ | $\checkmark$ | $\mathbf{x}$ | $\mathbf{x}$ | $\checkmark$ |
| $\mathrm{COCl} \longrightarrow \mathrm{CH}_{2} \mathrm{OH}$ | $\checkmark$ | $\checkmark$ | $\mathbf{x}$ | $\checkmark$ |
| $(\mathrm{RCO})_{2} \mathrm{O} \longrightarrow \mathrm{RCH}_{2} \mathrm{OH}$ | $\checkmark$ | $\mathbf{x}$ | $\checkmark$ | $\checkmark$ |
| $\mathrm{COOR} \longrightarrow \mathrm{CH}_{2} \mathrm{OH}$ | $\checkmark$ | $\mathbf{x}$ | $\checkmark$ | $\checkmark$ |
| $>\mathrm{C}=\mathrm{C} \longrightarrow \longrightarrow \mathrm{CH}-\mathrm{CH}\langle$ | $\boldsymbol{x}$ | $\mathbf{x}$ | $\checkmark$ | $\checkmark$ |

- Ethers are organic compounds in which two alkyl groups are attached to an oxygen atom and have general formula $R-\mathrm{O}-R$ or $R-\mathrm{O}-R^{\prime}$.
- According to IUPAC names, ethers are called alkoxy hydrocarbons.


## ALDEHYDES, KETONES AND CARBOXYLIC ACID

- Aldehydes are compounds of the general formula RCHO and ketones are compounds of the general formula $R C O R^{\prime}$. The groups $R$ and $R^{\prime}$ may be aliphatic or aromatic.
- IUPAC names of carboxylic acids are derived
from alkanes by replacing the terminal e by
the suffix oic acid.

| Formula | Common <br> name | IUPAC <br> name |
| :--- | :--- | :--- |
| 1. HOOC COOH | Oxalic acid | Ethanedioic <br> acid |
| 2. $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{COOH}$ | Malonic acid | Propanedioic <br> acid <br> Butanedioic <br> acid |
| 3. $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ | Succinic <br> acid | Saturated Dicarboxylic Acids |


| 4. $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$ | Glutaric acid | Pentanedioic <br> acid |
| :--- | :--- | :--- |
| 5. $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ | Adipic acid | Hexanedioic <br> acid |
| 6. $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}$ | Pimelic acid | Heptanedioic <br> acid |
| 7. $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$ | Suberic acid | Octanedioic <br> acid |
| 8. $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$ | Azelaic acid | Nonanedioic <br> acid |
| 9. $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}$ | Sebacic acid | Decanedioic <br> acid. |

## Some Important Reactions

|  | Name of reaction | Starting material | Reagent and other condition, if any | Application (used in) |
| :---: | :---: | :---: | :---: | :---: |
| 1. | Wurtz reaction | 2 moles of alkyl halides ( $R X$ ) | Metallic Na , dry ether | Alkanes |
| 2. | Friedel- Crafts reaction | $\mathrm{C}_{6} \mathrm{H}_{6}+R X$ or RCOCl | Anhydrous $\mathrm{AlCl}_{3}$ | Alkyl benzenes and acyl benzenes |
| 3. | Kolbe electrolytic | Sod. or Pot. salt of carboxylic acids | Electrolysis | alkanes, alkenes, alkynes |
| 4. | Williamson synthesis | Alkyl halides ( $R X$ ) <br> + alkoxides ( RONa ) | Heat | Ether |
| 5. | Clemmensen reduction | Aldehyde or ketone $(>\mathrm{C}=\mathrm{O})$ | Amalgamated zinc $(\mathrm{Zn}-\mathrm{Hg})$ and conc. HCl | Hydrocarbons |
| 6. | Rosenmund reduction | Acid chlorides ( RCOCl ) | $\mathrm{H}_{2}$ in presence of $\mathrm{Pd} / \mathrm{BaSO}_{4}$ and quinoline | Aldehydes |
| 7. | Cannizzaro reaction | Aldehydes not having $\alpha$-hydrogen atom | Aq. of alc. alkali | Alcohol + Acid |
| 8. | Tischenko reaction | All Aldehydes | Aluminium ethoxide $\mathrm{Al}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ | Esters |
| 9. | Aldol condensation | Aldehydes having $\alpha$ - hydrogen atom | Strong solution of alkali | Resin |
| 10. | Benzoin condensation | Aromatic aldehydes | KCN | Benzoin |
| 11. | Haloform reaction | $\mathrm{CH}_{3} \mathrm{CHO}$, methyl ketones $\left(\mathrm{CH}_{3} \mathrm{CO}-\right), \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and RCHOHCH 3 | Alkaline halogen $\left(\mathrm{NaOH}+X_{2}\right)$ or Sod. hypohalites ( NaOX ) | Haloform (test of $-\mathrm{COCH}_{3}$ group) |
| 12. | Kolbe-Schmidt reaction | Phenol ( $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)$ | $\mathrm{CO}_{2}, 125^{\circ} \mathrm{C}, 5-7 \mathrm{~atm}$. | Salicylic acid |


| 13. | Reimer -Tiemann reaction | Phenol | $\mathrm{CHCl}_{3}$ or $\mathrm{CCl}_{4}(\mathrm{NaOH})$ | Salicylaldehyde or Salicylic acid (Asprin) |
| :---: | :---: | :---: | :---: | :---: |
| 14. | Hofmann-bromamide reaction | Acid amides $\left(-\mathrm{CONH}_{2}\right)$ | $\mathrm{Br}_{2}+$ Alkali | Primary amines |
| 15. | Carbylamine reaction | Primary amines (- $\mathrm{NH}_{2}$ ) | $\mathrm{CHCl}_{3}+$ Alkali | Carbylamine (test or $-\mathrm{NH}_{2}$ group) |
| 16. | Diazotisation | Aromatic primary amines | Conc. HCl , $\mathrm{NaNO}_{2}-\mathrm{HCl}, 0-5^{\circ} \mathrm{C}$ | Benzenediazonium salts. |
| 17. | Sandmeyer reaction | Benzenediazonium salts | $\begin{aligned} & \mathrm{CuCl}-\mathrm{HCl}, \\ & \mathrm{CuBr}-\mathrm{Br}, \mathrm{CuCN} \end{aligned}$ | Halogenobenzenes |
| 18. | Gattermann reaction | Benzenediazonium salts | $\mathrm{Cu} \text { powder }+\mathrm{HCl}$ | Halogenobenzenes |
| 19. | Coupling reaction | Benzenediazonium salt + Phenol or aniline | Alkali (in case of phenol), acid (in case of aniline), low temp. | Azo-dyes (detection of phenolic and amino group) |

## AMINES

- Aliphatic amine are called as alkanamines in which ' $e$ ' of alkane is replaced by amine. where $X^{-}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, etc.
- Basicity of Amines

- Diazonium salts

General formula : $\mathrm{ArN}_{2}{ }^{+} \mathrm{X}^{-}$
where $X^{-}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, etc

## BIOMOLECULES

- The name 'carbohydrate' was given as earlier studies of these compounds led to their being classified as "hydrates of carbon", with general formula $\mathrm{C}_{x}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}$.
- There are about 20 amino acids which make up the bioproteins. Out of these 10 amino
acids (non-essential) are synthesised by our bodies and rest are essential in the diet (essential amino acids) and supplied to our bodies by food which we take because they cannot be synthesised in the body.

|  | Name of amino acid | Structure of $R$ | Three letter symbol |
| :---: | :---: | :---: | :---: |
| 1 | Glycine | -H | Gly |
| 2 | Alanine | $-\mathrm{CH}_{3}$ | Ala |
| *3 | Valine | $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ | Val |
| ${ }^{*} 4$ | Leucine | $-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ | Leu |
| *5 | Isoleucine |  | Ile |
| *6 | Arginine |  | Arg |
| *7 | Lysine | $-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}$ | Lys |
| 8 | Glutamic acid | $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ | Glu |
| 9 | Aspartic acid | $-\mathrm{CH}_{2} \mathrm{COOH}$ | Asp |
| 10 | Glutamine | $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ | Gln |
| 11 | Asparagine | $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ | Asn |
| *12 | Threonine | - $\mathrm{CHOH} . \mathrm{CH}_{3}$ | Thr |
| 13 | Serine | $-\mathrm{CH}_{2} \mathrm{OH}$ | Ser |
| 14 | Cysteine | $-\mathrm{CH}_{2} \mathrm{SH}$ | Cys |
| *15 | Methionine | - $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$ | Met |
| ${ }^{*} 16$ | Phenylalan-ine | $-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ | Phe |
| 17 | Tyrosine | $-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}(p)$ | Tyr |


*Essential aminoacid

- Base + Sugar $=$ Nucleoside

Base + Sugar + Phosphate $=$ Nucleotide

- For RNA, ribose (sugar) + uracil (base)
= Nucleoside.
- For DNA, deoxyribose (sugar) + thymine (base)
$=$ Nucleoside.
$\leftrightarrow$ Some common enzymes

| Enzymes | Reactions which is catalysed |
| :--- | :--- |
| Amylase | Starch $\rightarrow n \times$ glucose |
| Maltase | Maltose $\rightarrow 2 \times$ glucose |
| Lactase | Lactose $\rightarrow$ glucose + galactose |
| Invertase | Sucrose $\rightarrow$ glucose + fructose |
| Pepsin | Proteins $\rightarrow$ Amino acid |
| Trypsin | Proteins $\rightarrow$ Amino acid |
| Nucleases | DNA, RNA $\rightarrow$ Nucleotides |
| Urease | Urea $\rightarrow \mathrm{NH}_{3}+\mathrm{CO}_{2}$ |
| Carbonic | $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ |
| anhydrase |  |

## POLYMER

- Number average molecular mass $\left(\bar{M}_{N}\right)$
$=\frac{N_{1} M_{1}+N_{2} M_{2}+N_{3} M_{3}+\ldots \ldots \ldots}{N_{1}+N_{2}+N_{3}+\ldots \ldots}$
Where $N_{1}, N_{2}, N_{3}$ $\qquad$ .are the number of molecules with molecular masses $M_{1}, M_{2}, M_{3}$ ...... respectively.
or $\quad \bar{M}_{N}=\frac{\sum\left(N_{i} M_{i}\right)}{\sum N_{i}}$
Where $N_{i}$ is the number of molecules of the $i^{\text {th }}$ type with molecular mass $M_{i}$.
- Weight average molecular mass $\left(\bar{M}_{w}\right)$
$=\frac{m_{1} M_{1}+m_{2} M_{2}+m_{3} M_{3}+\ldots \ldots .}{m_{1}+m_{2}+m_{3}+\ldots \ldots .}$
Where $m_{1}, m_{2}, m_{3} \ldots \ldots \ldots$. are the masses of species with molecular mass $M_{1}, M_{2^{\prime}}$ $M_{3} \ldots$. respectively, then the weight average molecular mass is
or $\bar{M}_{w}=\frac{\sum\left(m_{i} M_{i}\right)}{\sum m_{i}}$
But $m_{i}=N_{i} M_{i}$, so that $\bar{M}_{w}=\frac{\sum\left(N_{i} M_{i}{ }^{2}\right)}{\sum\left(N_{i} M_{i}\right)}$
- Poly dispersity index (PDI)
$=\frac{\text { Weight average molecular mass }}{\text { Number average molecular mass }}=\frac{\bar{M}_{w}}{\bar{M}_{n}}$
CHEMISTRY IN EVERYDAY LIFE
Therapeutic index (TI)
Maximum tolerated dose (MTD)
Maximum curative dose (MCD)
Chemicals in cosmetics
Chemical
Acetone : Cologne, nail enamel remover
Banzaldehyde : Perfumes, cologne, hair spray, vaseline, shaving cream, shampoo, soaps
Benzyl acetate : Perfumes, detergent, soaps, after shave lotions, deodorants
Benzyl alcohol : Cologne, nail enamel remover, fabric softener
Camphor : Perfumes, shaving cream, nail polish

Methylene chloride : Shampoo, cologne
Ethanol : Shampoo, hair spray, perfumes, shaving creams

| Toluene | Lacquers and nail moisturizers | Linalool | Perfumes, bar soaps, hand lotions |
| :---: | :---: | :---: | :---: |
| Benzoic acid | Cream and lotion | Terpinene | Cologne, perfume, air freshener |
| Cetyl | lotions | Terpineol | Perfumes and cologne |
| Hydroquinone | Moisturising cream | $p$-Chlorome | Deodorants |
|  |  | Dichloromet | Deodorants |

## ©()-

Secure 80\% with ease in CBSE class 12

$\Rightarrow$ Previous 10 years' CBSE Board paper questions
$\Rightarrow$ Concise \& lucid theory
$\Rightarrow$ And answers pulled from 10 years CBSE Delhi, All India, Foreign \& Compartment papers.
$\Rightarrow$ Chapter-wise topic-wise questions segregated as per NCERT syllabus
$\Rightarrow 5$ Practice papers based on blue print issued by CBSE Board

