## CLASS 12 - MATHEMATICS FORMULA BOOK FOR CBSE BOARD

#### **RELATIONS & FUNCTIONS**

- Relations
   Cartesian Product of Sets
   A × B = {(x, y) : x ∈ A, y ∈ B}
- Functions

A function  $f: X \to Y$  is **one-one (injection)** if  $f(x) = f(y) \Rightarrow x = y$  or  $x \neq y \Rightarrow f(x) \neq f(y)$ A function  $f: X \to Y$  is **onto (surjection)** if to each  $y \in Y$ , there exists  $x \in X$  such that f(x) = y. *f* is **invertible**  $\Leftrightarrow$  *f* is one-one onto **(Bijection)** The **number of functions** from a finite set *A* to a finite set  $B = (n(B))^{n(A)}$ 

The **number of one-one functions** that can be defined from a finite set *A* to a finite set *B* is

 ${}^{n(B)}P_{n(A)}$  if  $n(B) \ge n(A)$  and 0, otherwise.

• If a relation is reflexive, symmetric and transitive then the relation is an equivalence relation.

#### INVERSE TRIGONOMETRY FUNCTIONS

• Properties of Inverse Trigonometric Functions  $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, |x| \le 1$   $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x \in R$   $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}, |x| \ge 1$   $\sin^{-1} (-x) = -\sin^{-1} x, |x| \le 1$   $\cos^{-1} (-x) = \pi - \cos^{-1} x, |x| \le 1$   $\tan^{-1} (-x) = -\tan^{-1} x, x \in R$   $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy}\right), xy < 1$   $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy}\right), xy > -1$ 

$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x, |x| \le 1$$
  

$$\cos^{-1}\left(\frac{1+x^2}{1-x^2}\right) = 2\tan^{-1}x, x \ge 0$$
  

$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}x, |x| < 1$$
  

$$\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}\left(x\sqrt{1-y^2} \pm y\sqrt{1-x^2}\right),$$
  

$$x \ge -1, y \le 1$$
  

$$\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}\left(xy \pm \sqrt{1-x^2}\sqrt{1-y^2}\right),$$
  

$$x \ge -1, y \le 1$$

MATRICES AND DETERMINANTS

#### Transpose of a Matrix

Let  $A = [a_{ij}]_{m \times n}$  matrix. Then the transpose of A, denoted by  $A^T$  or A', is an  $n \times m$  matrix such that  $A^T = [a_{ji}]_{n \times m} \forall i = 1, 2, ..., m$  and j = 1, 2, ..., n.

Thus,  $A^T$  is obtained from A by changing its rows into columns and its columns into rows.

### Properties of Transpose Let A and B be two matrices. Then

- Let A and B be two matrices. Then  $(A^T)^T$
- (i)  $(A^T)^T = A$ (ii)  $(A + B)^T = A^T + B^T$ , where *A* and *B* being of the
- (1) (A+B) = A + B, where A and B being of the same order.
- (iii)  $(kA)^{T} = kA^{T}$ , *k* be any scalar (real or complex)
- (iv)  $(AB)^{T} = B^{T}A^{T}$ , A and B being conformable for the product AB. (Reversal law).
- $(\mathbf{v}) \quad (ABC)^T = C^T B^T A^T.$ 
  - **Some Special Matrices Symmetric matrix :** A square matrix  $A = [a_{ij}]$  is called a symmetric matrix if  $a_{ij} = a_{ji}$  for all *i*, *j*.

**Skew-symmetric matrix :** A square matrix  $A = [a_{ij}]$  is a skew-symmetric matrix if  $a_{ij} = -a_{ji}$  for all *i*, *j*.

**Orthogonal matrix :** A square matrix *A* is called an orthogonal matrix if  $AA^T = A^T A = I$ . **Equivalent matrices :** Two matrices *A* and *B* are equivalent if one can be obtained from the other by a sequence of elementary row transformations.

#### • Invertible Matrices

If *A* is a square matrix of order *n* and if there exists another square matrix *B* of the same order *n*, such that AB = BA = I, then *B* is called the inverse matrix of *A* and it is denoted by  $A^{-1}$ . In that case *A* is said to be invertible.

#### • Uniqueness of inverse

Inverse of a square matrix, if it exists, is unique.

If *A* and *B* are invertible matrices of the same order, then  $(AB)^{-1} = B^{-1} A^{-1}$ .

• Inverse of a Matrix by Elementary Operations

To find  $A^{-1}$  using elementary row operations, write A = IA and apply a sequence of row (column) operations on A = IA till we get, I = BA. The matrix *B* will be the inverse of *A*.

#### • Properties of Determinant

- (i) det  $I_n = 1$ , where  $I_n$  is unit/identity matrix of order n.
- (ii) det  $O_n = 0$ , O is null matrix (square matrix of any order).
- (iii)  $A = (a_{ij})_{n \times n}$  then |A| = |A'| {Reflection Property}.
- (iv) det (AB) = det A·det B, where A & B are matrices of same order.
- (v) det  $(kA) = k^n \det A$ , if A is of order  $n \times n$ .
- (vi) det  $(A^n) = (\det A)$  if  $n \in I^+$ .
- (vii) |A| = 0 iff
  - (a) Any two rows or columns are identical.
  - (b) Any two rows or columns are in proportion.
  - (c) Each element of any row/column is zero.
- (viii)If each element of a row/column of a determinant is multiplied by *k* then value of new determinant is *k* times the original determinant.
- (ix) Determinant of a diagonal matrix is the product of its diagonal elements.
- (x) If two rows/columns of a determinant are interchanged, then the determinant retains its absolute value but its sign is changed.
- (xi) If each element of a row/column of a determinant is expressed as a sum of two or more terms, then determinant can be expressed as the sum of two or more determinants.

- (xii) If any row/column of a determinant, a multiple of another row/column is added, then the value of determinant does not change.
- (xiii) The sum of product of the elements of any row/column of a determinant with cofactors of the corresponding elements of any other row/column is zero.

#### • **Application of Determinants** Area of triangle with vertices $A(x_1, y_1)$ ,

 $B(x_{2'}, y_2) \text{ and } C(x_{3'}, y_3) \text{ is given by } \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ 

If area is zero then three points are collinear. Minors and Cofactors

**Minor of**  $a_{ij}$  **in** |A|: The minor of an element  $a_{ij}$  in |A| is defined as the value of the determinant obtained by deleting the  $i^{th}$  row and  $j^{th}$  column of |A|, and it is denoted by  $M_{ij}$ .

**Cofactor of**  $a_{ij}$  **in** |A| : The cofactor  $C_{ij}$  of an element  $a_{ij}$  is defined as  $C_{ij} = (-1)^{i+j} M_{ij}$ .

#### Adjoint of a Matrix

Adjoint of a matrix  $A = (a_{ij})_{n \times n}$  is defined as adj  $A = [C_{ii}]_{n \times n}$ , where

 $C_{ii}$  represents cofactor of  $a_{ii}$  in |A|.

**Properties of Adjoint of a Matrix** 

For every square matrix

 $A(\operatorname{adj} A) = (\operatorname{adj} A)A = |A| \cdot I.$ 

If |A| = 0 matrix *A* is called singular else nonsingular.

If *A* and *B* are non singular matrices of the same order, then *AB* and *BA* are also non singular matrices of same order.

 $(adj AB) = (adj B) \cdot (adj A)$ 

- $(\operatorname{adj} A)' = \operatorname{adj} A'.$
- Let *A* be  $n \times n$  matrix, then
- (i)  $|adjA| = |A|^{n-1}$

(ii) 
$$\operatorname{adj}(\operatorname{adj} A) = |A|^{n-2}A$$

(iii)  $|adj(adjA)| = |A|^{(n-1)^2}$ 

#### • Inverse of a Matrix

A non-zero matrix *A* of order *n* is said to be invertible if there exists a square matrix *B* of order *n* such that AB = BA = I. We say  $A^{-1} = B$ .

A matrix A is invertible if  $|A| \neq 0$ .

$$A^{-1} = \frac{1}{|A|} \cdot (\operatorname{adj} A).$$
  
If  $AB = AC \implies B = C$  if  $|A| \neq 0$ .

 $(AB)^{-1} = B^{-1}A^{-1}.$ 

 $(A^T)^{-1} = (A^{-1})^T.$ 

If *A* is an invertible symmetric matrix then  $A^{-1}$  is also symmetric.

- **Solution of System of Linear Equations** Let *AX* = *B* be the given system of equations :
- (i) If  $|A| \neq 0$ , the system is consistent and has one unique solution.
- (ii) If |A| = 0 and  $(adj A)B \neq 0$ , then the system is inconsistent so it has no solution.
- (iii) If |A| = 0 and (adj A)B = 0, then the system is consistent but has infinitely many solutions.

| CONTINUITY | AND | DIFFEREN | FIABILITY |  |
|------------|-----|----------|-----------|--|
|            |     |          |           |  |

#### Continuity

|                             | Continuity of a Function    | Definitions                                                                                                                                                                |  |
|-----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.                          | At a point                  | $f(x)$ is continuous at $x = a$ if $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$ .                                                                                |  |
| 2.                          | In an interval              | (i) Open interval : $f(x)$ is continuous at every point of $(a, b)$ .<br>(ii) Closed interval : $f(x)$ is continuous in $(a, b)$ and right & left continuous at $a \& b$ . |  |
| Discontinuity of a Function |                             |                                                                                                                                                                            |  |
| 1.                          | At a point                  | If $f(x)$ is not continuous at $x = a$ .                                                                                                                                   |  |
| 2.                          | In an interval              | If $f(x)$ is not continuous at atleast one point in an interval.                                                                                                           |  |
| Types of Discontinuity      |                             |                                                                                                                                                                            |  |
| 1.                          | Removable discontinuity     | Either $f(a)$ does not exist or $f(x) \neq \lim_{x \to a} f(x)$                                                                                                            |  |
| 2.                          | Non-removable discontinuity | (i) First kind: If $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$                                                                                                  |  |
|                             |                             | (ii) Second kind: If $\lim_{x\to a^-} f(x)$ or $\lim_{x\to a^+} f(x)$ or both do not exist.                                                                                |  |

#### Differentiability

| Differentiablity of a function | Differentiablity of a function                                                                                                                                                                                       |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. At a point                  | $f(x) \text{ is differentiable at } x = c \text{ if}$ $\lim_{\substack{x \to c-h \\ h \to 0}} \frac{f(c-h) - f(c)}{-h} = \lim_{\substack{x \to c+h \\ h \to 0}} \frac{f(c+h) - f(c)}{h} \text{ or } Lf'(c) = Rf'(c)$ |  |  |
| 2. In an interval              | (i) Open interval: If $f(x)$ is differentiable at every point of $(a, b)$ .(ii) Closed interval: If $f(x)$ is differentiable in $(a, b)$ and also at $a$ and $b$ .                                                   |  |  |

#### Derivative

|    | Derivative of a function       |                                                                                                                     |
|----|--------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1. | Left Hand Derivative (L.H.D.)  | $Lf'(x) = \lim_{h \to 0} \frac{f(x-h) - f(x)}{-h}$                                                                  |
| 2. | Right Hand Derivative (R.H.D.) | $Rf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, \text{ If } Lf'(x) = Rf'(x), \text{ then } f'(x) \text{ exists.}$ |
| 3. | Properties of derivative       | (i) $(u \pm v)' = u' \pm v'$                                                                                        |
|    |                                | (ii) $(uv)' = u'v + uv'$ (Product rule)                                                                             |
|    |                                | (iii) $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ , $v \neq 0$ (Quotient rule)                              |

#### Derivative Derivative Derivative Function Function Function $n \chi^{n-1}$ $x^n$ $-\sin x$ $\sin x$ $\cos x$ $\cos x$ $\sec^2 x$ $-\cos^2 x$ tan x $\cot x$ sec x sec x tan x pax aeax $e^{x}$ $e^{x}$ $- \operatorname{cosec} x \operatorname{cot} x$ cosec x $\frac{1}{\sqrt{(1-x)^2}}, x \in (-1,1)$ $\frac{-1}{\sqrt{1-x^2}}, x \in (-1,1)$ $\frac{1}{|x|\sqrt{x^2-1}},$ $\csc^{-1} x$ $\sin^{-1} x$ $\cos^{-1} x$ $x \in R - [-1, 1]$ 1 $\frac{1}{1+x^2}, x \in (-\infty, \infty)$ $-\frac{1}{1+x^2}$ , $x \in (-\infty,\infty)$ $\tan^{-1} x$ $\sec^{-1} x$ $\frac{1}{|x|\sqrt{x^2-1}}$ $\cot^{-1} x$ $x \in R - [-1, 1]$ $\frac{1}{x}$ 1 $\log_e x$ a<sup>x</sup> $a^x \log_e a$ $\log_a x$ $x \log_a a$

#### **Derivatives of Important Functions**

Some kind of derivatives

| 1. Composite function (Chain rule) | (i) Let $y = f(t)$ and $t = g(x)$ . Then $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$                                                                                                                 |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | (ii) Let $y = f(t)$ , $t = g(u)$ and $u = h(x)$ . Then $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{du} \times \frac{du}{dx}$                                                                              |
| 2. Parametric function             | If $x = f(t)$ and $y = g(t)$ . Then $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}$ , $f'(t) \neq 0$                                                                                              |
| 3. Second order derivative         | Let $y = f(x)$ , then $\frac{dy}{dx} = f'(x)$ . If $f'(x)$ is differentiable,<br>then $\frac{d}{dx}\left(\frac{dy}{dx}\right) = f''(x)$ or $\frac{d^2y}{dx^2} = f''(x)$                                       |
| 4. Logarithmic                     | If $y = u^v$ , $u$ and $v$ are functions of $x$ , then $\log y = v \log u$ .<br>Differentiating w.r.t. $x$ , we get $\frac{d}{dx}(u^v) = u^v \left[ \frac{v}{u} \frac{du}{dx} + \log u \frac{dv}{dx} \right]$ |
| 5. Implicit function               | Here we differentiate the given function using                                                                                                                                                                |
|                                    | $\frac{d}{dx}(\phi(y)) = \frac{d\phi}{dy} \times \frac{dy}{dx}$                                                                                                                                               |

#### Mean Value Theorems

| 1. | Rolle's theorem                  | If $f(x)$ is defined on $[a, b]$ such that it is (i) continuous on $[a, b]$<br>(ii) differentiable on $(a, b)$ and<br>(iii) $f(a) = f(b)$ , then there exists at least one $c \in (a, b)$ such that $f'(c) = 0$                                                                                                                                                    |
|----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Geometrical meaning              | The tangent at point <i>c</i> on the curve is parallel to <i>x</i> -axis.                                                                                                                                                                                                                                                                                          |
| 2. | Lagrange's mean value<br>theorem | If <i>f</i> ( <i>x</i> ) is defined on [ <i>a</i> , <i>b</i> ] such that it is<br>(i) continuous on [ <i>a</i> , <i>b</i> ] (ii) differentiable on ( <i>a</i> , <i>b</i> ) and<br>(iii) <i>f</i> ( <i>a</i> ) $\neq$ <i>f</i> ( <i>b</i> ), then there exists at least one <i>c</i> $\in$ ( <i>a</i> , <i>b</i> ) such that<br>$f'(c) = \frac{f(b) - f(a)}{b - a}$ |
|    | Geometrical meaning              | The tangent at point <i>c</i> on the curve $= f(x)$ is parallel to the chord joining                                                                                                                                                                                                                                                                               |
|    |                                  | end points of the curve.                                                                                                                                                                                                                                                                                                                                           |

#### **APPLICATION OF DERIVATIVES**

#### • Rate of Change of Quantity

For y = f(x),  $\frac{dy}{dx}$  denotes rate of change of y w.r.t. x.

If x = f(t), y = g(t), then  $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$  is rate of change of *y* w.r.t. *x*.

#### • Tangents and Normals

The slope of the tangent to y = f(x) at  $(x_1, y_1)$ (dy)

is  $\left(\frac{dy}{dx}\right)_{(x_1, y_1)}$  or  $f'(x_1, y_1)$  and slope of the normal is

$$-\frac{1}{\left(\frac{dy}{dx}\right)_{(x_1,y_1)}} \text{ or } -\frac{1}{f'(x_1,y_1)}$$

The tangent equation at  $(x_1, y_1)$  is  $y - y_1 = f'(x_1, y_1)$   $(x - x_1)$  and normal equation at  $(x_1, y_1)$  is

#### **Increasing and Decreasing Function**

$$y - y_1 = -\frac{1}{f'(x_1, y_1)}(x - x_1)$$

Slope of tangent  $\frac{dy}{dx}$  = tan  $\theta$ ,  $\theta$  is angle made by tangent positive *x*-axis.

Angle between two curves is given by

 $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ , where  $m_1$  and  $m_2$  are slopes of tangents to two curve at point of intersection.

#### Approximations and Errors

If y = f(x) then  $\delta y = f'(x) \delta x$  where  $\delta y = f(x + \delta x) - f(x)$  and  $\delta x$  is error in x and  $\delta y$  is corresponding error in y.

- (i) Absolute error :  $\delta x$  is absolute error is *x*.
- (ii) Relative error :  $\frac{\delta x}{r}$  is the relative error.

(iii) Percentage error:  $\left(\frac{\delta x}{x} \times 100\right)$  is the percentage error.

|    | 0 0                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Without derivative test in ( <i>a</i> , <i>b</i> ) | (i) Increasing function: If $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$ for all $x_1, x_2 \in (a, b)$<br>(ii) Strictly increasing function: If $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ for all $x_1, x_2 \in (a, b)$<br>(iii) Decreasing function: If $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$ for all $x_1, x_2 \in (a, b)$<br>(iv) Strictly decreasing function: If $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ for all $x_1, x_2 \in (a, b)$ |
| 2  | First derivative test in $(a, b)$                  | (i) Increasing function: If $f'(x) \ge 0$ for all $x \in (a, b)$                                                                                                                                                                                                                                                                                                                                                                           |
| ∠. | i list delivative test ili (u, b)                  | (i) increasing function. If $f(x) \ge 0$ for all $x \in (a, b)$                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                    | (ii) Strictly increasing: If $f'(x) > 0$ for all $x \in (a, b)$                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                    | (iii) Decreasing: If $f'(x) \le 0$ for all $x \in (a, b)$                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                                    | (iv) Strictly decreasing: If $f'(x) < 0$ for all $x \in (a, b)$                                                                                                                                                                                                                                                                                                                                                                            |
| 3. | Critical or Stationary point                       | The value of <i>x</i> for which $f'(x) = 0$                                                                                                                                                                                                                                                                                                                                                                                                |

#### Maxima and Minima

| Maximum         | $f(x)$ has maximum at $x = c$ , if $f(c) \ge f(x)$ in neighbourhood of $c$ . |
|-----------------|------------------------------------------------------------------------------|
| Minimum         | $f(x)$ has minimum at $x = c$ , if $f(c) \le f(x)$ is neighbourhood of $c$ . |
| Local maxima    | If $f(x) < f(c) \forall x$ in the given interval.                            |
| Local minima    | If $f(c) < f(x) \forall x$ in the given interval.                            |
| Absolute maxima | If $f(x) \leq f(c) \forall x$ in domain of $f(x)$ .                          |
| Absolute minima | If $f(x) \ge f(c) \forall x$ in domain of $f(x)$ .                           |
|                 |                                                                              |

| Without derivative test                               |                                                                                                                                                                                                                        |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum                                               | If $f(c) > f(x) \forall x, c \in I$ , then $f(x)$ has maximum value in $I$ and $c$ is point of maxima.                                                                                                                 |
| Minimum                                               | If $f(c) < f(x) \forall x, c \in I$ , then $f(x)$ has minimum value in $I$ and $c$ is point of minima.                                                                                                                 |
| First derivative test                                 |                                                                                                                                                                                                                        |
| Local maximum<br>Local minimum<br>Point of inflection | If $f'(x)$ changes sign from + ve to – ve as $x$ increases through $c$ .<br>If $f'(x)$ changes sign from – ve to + ve as $x$ increases through $c$ .<br>If $f'(x)$ does not change sign as $x$ increases through $c$ . |
| Second derivative test                                |                                                                                                                                                                                                                        |
| Local maximum                                         | If $f'(c) = 0$ and $f''(c) < 0$ , then $f(x)$ has local maxima at $c$ .                                                                                                                                                |
| Local minimum                                         | If $f'(c) = 0$ and $f''(c) > 0$ , then $f(x)$ has local minima at $c$ .                                                                                                                                                |

#### INTEGRALS & DIFFERENTIAL EQUATIONS

#### • Some Fundamental Integrals

(i) 
$$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + c$$
, where  $n \neq -1$ 

(ii) 
$$\int \frac{1}{x} dx = \log_e |x| + c$$
, where  $x \neq 0$ 

(iii)  $\int e^x dx = e^x + c$ 

(iv) 
$$\int a^x dx = \frac{a^x}{\log_e a} + c$$
, where  $a > 0$ 

- (v)  $\int \sin x \, dx = -\cos x + c$
- (vi)  $\int \cos x \, dx = \sin x + c$
- (vii)  $\int \sec^2 x \, dx = \tan x + c$
- (viii)  $\int \csc^2 x \, dx = -\cot x + c$
- (ix)  $\int \sec x \cdot \tan x \, dx = \sec x + c$
- (x)  $\int \csc x \cdot \cot x \, dx = -\csc x + c$
- (xi)  $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + c \text{ or } -\cos^{-1}x + c$ , where |x| < 1

(xii) 
$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + c \text{ or } -\cot^{-1} x + c$$
  
(xiii)  $\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1} x + c \text{ or } -\csc^{-1} x + c$ 

• Some standard integrals using the above relations are shown below :

- (i)  $\int \tan x \, dx = \log |\sec x| + c = -\log |\cos x| + c$
- (ii)  $\int \cot x \, dx = -\log |\operatorname{cosec} x| + c = \log |\sin x| + c$
- (iii)  $\int \sec x \, dx = \log |\sec x + \tan x| + c$
- (iv)  $\int \csc x \, dx = \log |\csc x \cot x| + c = \log |\csc x \cot x| + c = \log |\tan \frac{x}{2}| + c$
- Some special integrals

(i) 
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

(ii) 
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$

(iii) 
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$

(iv) 
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log \left| x + \sqrt{x^2 \pm a^2} \right| + c$$

(v) 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + c, |x| < |a|$$

(vi) 
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$

• To evaluate integrals of type

(i) 
$$\int \frac{lx+m}{ax^2+bx+c} dx$$
, where  $l \neq 0, a \neq 0$ 

Take 
$$lx + m = \frac{1}{2a}(2ax+b) + \left(m - \frac{lb}{2a}\right)$$

(ii) 
$$\int \frac{lx+m}{\sqrt{ax^2+bx+c}} dx$$
, where  $l \neq 0, a \neq 0$ 

Put 
$$z^2 = ax^2 + bx + c$$
,  
so that  $2z \cdot \frac{dz}{dx} = 2ax + b$  or  $dz = \frac{(2ax+b)}{2z}dx$   
(iii)  $\int \frac{dx}{(lx+m)\sqrt{ax+b}}$ , put  $ax+b=z^2$   
(iv)  $\int \frac{dx}{(lx+m)\sqrt{ax^2+bx+c}}$ , put  $lx+m=\frac{1}{z}$   
(v)  $\int \frac{dx}{(lx^2+m)\sqrt{ax^2+b}}$ , put  $\sqrt{ax^2+b} = xz$  or  $x = \frac{1}{z}$ 

Integration by parts

$$\int (\mathbf{I} \cdot \mathbf{II}) \, dx = \mathbf{I} \int \mathbf{II} \, dx - \int \left[ \frac{d}{dx} (\mathbf{I}) \int \mathbf{II} \, dx \right] dx + c$$

Choice of I<sup>st</sup> function and II<sup>nd</sup> function depends on order of letters in the word ILATE

- T  $\rightarrow$  Inverse function
- Ι.  $\rightarrow$  Logarithmic function
- А  $\rightarrow$  Algebraic function
- Т  $\rightarrow$  Trigonometric function
- $\rightarrow$  Exponential function E
- A special integral

$$e^{x} \left[ f(x) + f'(x) \right] dx = f(x) \cdot e^{x} + c$$

Partial Fractions and their uses in integration.

If the integrand is a rational function,  $\frac{p(x)}{x}$ 

(i) If degree (p(x)) < degree(q(x))

*i.e.*, 
$$f(x) = \frac{mx+n}{(x-a)(x-b)}$$
,  $a \neq b$  then we write

 $\frac{mx+n}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}, A \text{ and } B \text{ being}$ constants.

(ii) If degree (p(x)) = degree (q(x)) or degree (p(x)) >degree (q(x)) of non-repeated linear

factors, *i.e.*, 
$$f(x) = \frac{mx^2 + nx + l}{(x-a)(x-b)}$$
,  $a \neq b$  then we

write  $\frac{mx^2 + nx + l}{(x-a)(x-b)} = m + \frac{A}{x-a} + \frac{B}{x-b}$ 

(iii) If denominator q(x) contains linear factors, some of which are repeated, *i.e.*, integrand is of

the form 
$$\frac{p(x)}{(x-a)(x-b)^2}$$
, then we write the integrand as  $\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{(x-b)^2}$ 

To evaluate integral of the type

(i) 
$$\int \frac{x^2 + A}{x^4 + kx^2 + A^2} dx$$

Divide numerator and denominator by  $x^2$  and substitute  $x - \frac{A}{x} = u$ , A being any positive constant

(ii) 
$$\int \frac{x^2 - A}{x^4 + kx^2 + A^2} dx$$

Divide numerator and denominator by  $x^2$  and substitute  $x + \frac{A}{r} = t$ ; A being positive constant.

(iii) 
$$\int \frac{ax^2 + bx + c}{px^2 + qx + r} dx$$
  
put  $ax^2 + bx + c = l(px^2 + qx + r) + m\left(\frac{d}{d}(px^2 + qx + r)\right)$ 

 $m\left(\frac{1}{dx}(px^2+qx+r)\right)+n$ Find 1, m and n by equating coefficients of like powers of x and then split the integral into three integrals.

#### **Trigonometric** integrals

 $\int a\sin x + b\cos x \, dx$ 

Put  $a \sin x + b \cos x = L$  (Denominator) +

*M* (Derivative of denominator) Note: (1) To evaluate the integration of the forms

$$\int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}, \int \frac{dx}{a + b \sin^2 x}, \int \frac{dx}{a + b \cos^2 x}, \int \frac{dx}{(a \sin x + b \cos x)^2} \text{ and } \int \frac{dx}{a + b \sin^2 x + c \cos^2 x}$$
  
Step 1: Divide by  $\cos^2 x$  in each case.

**Step 2**: Put tan *x* = *t*, we get the form  $\int \frac{dx}{at^2 + bt + c}$  for which the method to evaluate is already discussed.

(2) To evaluate integrals of the form

(i) 
$$\int \frac{dx}{a\sin x + b\cos x}$$
 (ii)  $\int \frac{dx}{a + b\sin x}$   
(iii)  $\int \frac{dx}{a + b\cos x}$  (iv)  $\int \frac{dx}{a\sin x + b\cos x + c}$ 

For all the cases (i), (ii), (iii) & (iv), take universal

substitution  $\tan \frac{x}{2} = t$  and  $\sin x = \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$ ,  $\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$  are used. This substitution

convert the integrals in the form  $\int \frac{dt}{at^2 + bt + c}$  and to evaluate such integral, method is already discussed.

#### Mathematics

8

- Properties of Definite Integrals (i)  $\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\beta} f(t) dt$ (ii)  $\int_{\alpha}^{\beta} f(x) dx = -\int_{\beta}^{\alpha} f(x) dx$ (iii) (a)  $\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\gamma} f(x) dx + \int_{\gamma}^{\beta} f(x) dx, \quad \alpha < \gamma < \beta$ (b)  $\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{c} f(x) dx + \int_{c_{1}}^{c} f(x) dx + \dots + \int_{c_{n}}^{\beta} f(x) dx, \quad \alpha < \gamma < \beta$ (iv)  $\int_{\alpha}^{\beta} f(x) dx = \int_{0}^{\alpha} f(\alpha - x) dx$ (v)  $\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\beta} f(\alpha + \beta - x) dx$ (vi)  $\int_{-\alpha}^{\alpha} f(x) dx = \begin{cases} 2\int_{0}^{\alpha} f(x) dx, & \text{if } f(-x) = f(x) \\ 0, & \text{if } f(-x) = -f(x) \end{cases}$
- (vii)  $\int_{0}^{2a} f(x) dx = \begin{cases} 2\int_{0}^{\alpha} f(x)dx, & \text{if } f(2\alpha x) = f(x) \\ 0, & \text{if } f(2\alpha x) = -f(x) \end{cases}$

(viii) If f(t) is an odd function then  $g(x) = \int_{0}^{0} f(t) dt$  is an even function.

(ix) If f(t) is an even function then  $g(x) = \int_{0}^{x} f(t) dt$  is an odd function.

• Definite integral as the limit of a sum

An alternative method of finding  $\int_{\alpha} f(x) dx$  is that the definite integral  $\int_{\alpha}^{\beta} f(x) dx$  is a limiting case of the summation of an infinite series provided f(x) is continuous on  $[\alpha, \beta]$ , *i.e.*,

 $\int_{\alpha}^{\infty} f(x) dx = \lim_{h \to 0} h[f(\alpha) + f(\alpha + h) + \dots + f(\alpha + (n-1)h)]$ where  $h = \frac{\beta - \alpha}{n}$ 

• Formation of differential equations whose general solution is given

If an equation in independent and dependent variables involving some arbitrary constants is

given, then a differential equation is obtained as follows :

- (i) Differentiate the given equation w.r.t. the independent variable (say *x*)as many times as the number of arbitrary constants in it.
- (ii) Eliminate the arbitrary constants.
- (iii) The eliminant is the required differential equation.

Methods of solving the first order and first degree differential equation

Type (1) : Differential equation of the form

$$\frac{dy}{dx} = f(x)$$

To solve such type of equations we do the following :  $\frac{dy}{dx} = f(x) \Leftrightarrow dy = f(x) dx$  .....(A) Now integrating (A) both sides, we get  $y = \int f(x) dx + k$ , k is some constant.

Type (2) : Equation in variable separable form.

Consider the equation  $\frac{dy}{dx} = \frac{f(x)}{g(y)}$  which can be written as g(y) dy = f(x) dx

Now integrating both sides we get the solution :  $\int g(y)dy = \int f(x)dx + k$ , *k* is some constant.

**Type (3)** : Equation reducible to homogeneous form. Equation of the form  $\frac{dy}{dx} = F(x, y)$  where F(x, y) is homogeneous function of degree greater than zero, then we make substitution y = vx and  $\frac{dy}{dx} = v + \frac{xdv}{dx}$ 

**Type (4) :** Solution of linear differential equation (a) Consider  $\frac{dy}{dx} + Py = Q$ , where *P*, *Q* are functions of *x* or constant only.

we solve such equation by finding  $e^{\int Pdx}$  where  $e^{\int Pdx}$  is known as integrating factor.

:. The solution is  $y \cdot (I.F.) = \int (Q \times I.F.) dx + c$ 

(b) Consider  $\frac{dx}{dy} + Px = Q$ , where *P*, *Q* are functions of *y* or constant only then I.F. =  $e^{\int Pdy}$ 

 $\therefore$  The solution is  $x \cdot (I.F.) = \int (Q \times I.F.) dy + c$ 

#### VECTOR ALGEBRA

• Vectors have magnitude and direction denoted by  $\overrightarrow{AB}$  whereas scalars have only magnitude. The magnitude of vector is the length of the line

segment *AB* denoted by  $|\overrightarrow{AB}|$ .

#### **Types of Vectors**

| Types of<br>Vectors             | Definition                                                   | Notation                                                                                                                                                                              |
|---------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i) Zero vector/<br>Null vector | Initial point<br>and terminal<br>point coincide              | ĀÀ                                                                                                                                                                                    |
| (ii) Unit vector                | Magnitude is<br>unity                                        | â                                                                                                                                                                                     |
| (iii) Coinitial<br>vectors      | Vectors having<br>same initial<br>point.                     | $\overrightarrow{OA},\overrightarrow{OC},\overrightarrow{OD}$                                                                                                                         |
| (iv) Collinear<br>vectors       | Vectors which<br>are parallel to<br>the same vector          | $ \begin{array}{c} \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{O} & \overrightarrow{A} & \overrightarrow{C} \\ \end{array} $ |
| (v) Equal<br>vectors            | Vectors having<br>same magnitude<br>and same<br>direction    | $\vec{a} = \vec{b}$                                                                                                                                                                   |
| (vi) Negative<br>of a vector    | Vector having<br>same magnitude<br>but opposite<br>direction | $\overrightarrow{BA} = -\overrightarrow{AB}$                                                                                                                                          |
| (vii)Free<br>vectors            | Vectors whose<br>initial point is<br>not specified           |                                                                                                                                                                                       |

Laws of Addition of Vectors

| (i) Triangle<br>Law of<br>Addition    |                                                                                                                                                                                                  | $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| (ii) Parallelogram<br>Law of Addition | $Q$ $\overrightarrow{b}$ $\overrightarrow{a}$ $\overrightarrow{b}$ $\overrightarrow{a}$ $\overrightarrow{b}$ $\overrightarrow{b}$ $\overrightarrow{b}$ $\overrightarrow{b}$ $\overrightarrow{b}$ | $\overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OR}$ |

#### **Properties of Addition of Vectors**

| (i)   | $\vec{a} + \vec{b} = \vec{b} + \vec{a}$                         | (Commutativity)     |
|-------|-----------------------------------------------------------------|---------------------|
| (ii)  | $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ | (Associativity)     |
| (iii) | $\vec{a} + \vec{0} = \vec{a}$                                   | (Additive identity) |
| (iv)  | $\vec{a} + (-\vec{a}) = \vec{0}$                                | (Additive inverse)  |

#### Multiplication of a Vector by a Scalar

Let \$\vec{a}\$ be a vector and \$m\$ be a scalar, then multiplication of vector \$\vec{a}\$ by scalar \$m\$ is given by \$(m\vec{a}) = (m)(\vec{a})\$

Properties of Multiplication of Vectors by a Scalar

- (i)  $m(-\vec{a}) = -(m\vec{a})$  (ii)  $(-m)(-\vec{a}) = m\vec{a}$
- (iii)  $m(n\vec{a}) = n(m)\vec{a} = (mn)\vec{a}$  (iv)  $(m+n)\vec{a} = m\vec{a} + n\vec{a}$
- (v)  $m(\vec{a} + \vec{b}) = m\vec{a} + m\vec{b}$
- Two vectors  $\vec{a}$  and  $\vec{b}$  are collinear or parallel iff  $\vec{a} = m\vec{b}$  for some non zero scalar *m*.
- **Position Vector:** Position vector of a point P(x, y, z)is given as  $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$  and its magnitude as  $|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$ , where *O* is the origin. **Components of a Vector in Two Dimension** 
  - If a point *P* in a plane has coordinate (x, y) then
- (i)  $\overrightarrow{OP} = x\hat{i} + y\hat{j}$  (ii)  $|\overrightarrow{OP}| = \sqrt{x^2 + y^2}$

(iii) The component of  $\overrightarrow{OP}$  along *x*-axis is a vector xi, whose magnitude is |x| and whose direction is along *OX* or *OX'* according as *x* is positive or negative.

(iv) The component of  $\overrightarrow{OP}$  along *y*-axis is a vector

 $y\hat{j}$ , whose magnitude is |y| and whose direction is along *OY* or *OY*' according as *y* is positive or negative.

For any two vectors,  $\vec{a} = x_1 \hat{i} + y_1 \hat{j}$  and  $\vec{b} = x_2 \hat{i} + y_2 \hat{j}$ 

- (i)  $\vec{a} + \vec{b} = (x_1 + x_2)\hat{i} + (y_1 + y_2)\hat{j}$
- (ii)  $\vec{a} \vec{b} = (x_1 x_2)\hat{i} + (y_1 y_2)\hat{j}$
- (iii)  $m\vec{a} = (mx_1)\hat{i} + (my_1)\hat{j}$ , where *m* is a scalar quantity
- (iv)  $\vec{a} = \vec{b} \Leftrightarrow x_1 = x_2$  and  $y_1 = y_2$

#### Components of a Vector in Three Dimensions

If P(x, y, z) is a point in space and  $\hat{i}, \hat{j}, \hat{k}$  are unit vectors, then

(i)  $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$ (ii)  $|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$  (iii) The component vectors of  $\overrightarrow{OP}$  along x, yand z are vectors  $x\hat{i}, y\hat{j}$ , and  $z\hat{k}$ .

 Vector Joining Two Points : If P(x1, y1, z1) and Q(x2, y2, z2) are two points, then vector joining P and Q is given by

 $\overrightarrow{PQ} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}.$ Section Formula

• The position vector of a point *R* dividing the line segment joining the points *P* and *Q*, whose position vectors are  $\vec{a}$  and  $\vec{b}$  respectively

(i) in the ratio m: n internally is  $\frac{m\vec{b} + n\vec{a}}{m+n}$ (ii) in the ratio m: n externally is  $m\vec{b} - n\vec{a}$ 

) in the ratio 
$$m: n$$
 externally is  $\frac{mo-nn}{m-n}$ 

- Projection of  $\vec{a}$  on  $\vec{b}$  is  $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$  and the projection vector of  $\vec{b}$  on  $\vec{a}$  is  $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right)$
- **Direction Cosines** : If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the angles made by a vector with the positive directions of *x*, *y* and *z* axes respectively, then  $\cos \alpha$ ,  $\cos \beta$  and  $\cos \gamma$  are called direction cosines of the vector and are generally denoted by the letters *l*, *m*, *n* respectively.  $\therefore$  *l* =  $\cos \alpha$ , *m* =  $\cos \beta$ , *n* =  $\cos \gamma$
- **Direction Ratios** : If *l*, *m*, *n* are the direction cosines of a vector and *a*, *b*, *c* are three numbers such that  $\frac{l}{a} = \frac{m}{b} = \frac{n}{c}$ . Then, direction ratios are proportional to *a*, *b*, *c*.
- If  $\alpha$ ,  $\beta$ ,  $\gamma$  are direction angles of vector  $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ , then

$$\cos \alpha = \frac{a_1}{|\vec{a}|}, \cos \beta = \frac{a_2}{|\vec{a}|}, \cos \gamma = \frac{a_3}{|\vec{a}|}$$

#### Product of Two Vectors

• Scalar (or Dot) Product of Two Vectors : It is defined as  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ , where  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$ ,  $0 \le \theta \le \pi$ .

#### Properties of scalar product

(i)  $\vec{a} \cdot \vec{b}$  is a real number.

(ii) 
$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$

(iii) If  $\theta = 0$ , then  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$ 

- (iv) If  $\theta = \pi$ , then  $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$ (v) For mutually perpendicular unit vectors  $\hat{i}, \hat{j}, \hat{k}$ , we have  $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$  and  $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$ (vi)  $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (vii)  $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (viii)  $(\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b})$
- **Vector (or Cross) Product of Two Vectors :** It is defined as  $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ , where  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$  and  $\hat{n}$  is unit vector perpendicular to the plane containing  $\vec{a}$  and  $\vec{b}$ .

#### Properties of vector product

- (i)  $\vec{a} \times \vec{b}$  is a vector
- (ii)  $\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \vec{a} \parallel \vec{b}$
- (iii) When  $\theta = 0$ ,  $\vec{a} \times \vec{b} = \vec{0}$
- (iv) When  $\theta = \pi$ ,  $\vec{a} \times \vec{b} = \vec{0}$
- (v) When  $\theta = \frac{\pi}{2}, \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}|$
- (vi) For mutually perpendicular unit vectors

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$
;  $\hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{i} = j$ 

(vii) Area of triangle 
$$ABC = \frac{1}{2} |\vec{a} \times \vec{b}|$$

(viii) 
$$\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|}$$

- (ix)  $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$  *i.e.*,  $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$
- (x)  $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- (xi) Area of parallelogram  $ABCD = |\vec{a} \times \vec{b}|$

• If  $\theta$  is angle between  $\vec{a} = a_1 \hat{i} + b_1 \hat{j} + c_1 \hat{k}$  and  $\vec{b} = a_2 \hat{i} + b_2 \hat{j} + c_2 \hat{k}$ , then

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

#### THREE DIMENSIONAL GEOMETRY

• The direction cosines of the line are

$$l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \ m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}},$$

$$n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

where *a*, *b*, *c* are direction ratios Relation between the direction cosines of a line is  $l^2 + m^2 + n^2 = 1$ 

Direction cosines of a line passing through two points  $P(x_1, y_1, z_1)$  and  $Q(x_2, y_2, z_2)$  are

$$\frac{x_2 - x_1}{PQ}, \frac{y_2 - y_1}{PQ}, \frac{z_2 - z_1}{PQ}$$
  
where  $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ 

**Section formula :** Ratio is *m* : *n* 

(i) Internal division :

$$x = \frac{mx_2 + nx_1}{m+n}, y = \frac{my_2 + ny_1}{m+n}, z = \frac{mz_2 + mz_1}{m+n}$$

(ii) External division :

$$x = \frac{mx_2 - nx_1}{m - n}, y = \frac{my_2 - ny_1}{m - n}, z = \frac{mz_2 - mz_1}{m - n}$$

(iii) Mid point formula :

$$x = \frac{x_1 + x_2}{2}, y = \frac{y_1 + y_2}{2}, z = \frac{z_1 + z_2}{2}$$

• Angle between two lines :

(i) Vector form : 
$$\cos \theta = \left| \frac{b_1 \cdot b_2}{|\vec{b}_1| |\vec{b}_2|} \right|$$

(ii) Cartesian form :

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2}} \right|$$

- Two lines are (i) perpendicular if  $a_1a_2 + b_1b_2 + c_1c_2 = 0$ 
  - (ii) parallel if  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

## Equation of a line passing through a given point and parallel to a given vector

- (i) Vector Equation :  $\vec{r} = \vec{a} + \lambda \vec{b}$
- (ii) Cartesian Equation :  $\frac{x x_1}{a} = \frac{y y_1}{b} = \frac{z z_1}{c}$

(iii) If l, m, n are the direction cosines of the line, the equation of the line is

$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$$

Equation of a line passing through two given points

(i) Vector equation:  $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a}), \lambda \in R$ 

(ii) Cartesian equation:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

• Shortest distance between two lines :

(i) Vector form : 
$$d = \frac{(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)}{|\vec{b}_1 \times \vec{b}_2|}$$

#### (b) Distance between parallel lines

$$= \frac{b \times (\vec{a}_2 - \vec{a}_1)}{|\vec{b}|}$$

Plane

d

- Equation of a plane in normal form
  - (i) Vector form :  $\vec{r} \cdot \hat{n} = d$
  - (ii) Cartesian form : lx + my + nz = d

Equation of a plane perpendicular to a given vector and passing through a given point.

- (i) Vector form :  $\vec{r} \cdot \hat{\vec{n}} = d$
- (ii) Cartesian form :  $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$
- Equation of a plane passing through three non collinear points :
  - (i) Vector form :  $(\vec{r} \vec{a}) \cdot [(\vec{b} \vec{a}) \times (\vec{c} \vec{a})] = 0$
  - (ii) Cartesian form :

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

Intercept form of the equation of a plane :

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

- Equation of the plane passing through the intersection of two given planes
  - (i) Vector form :  $\vec{r} \cdot (\vec{n}_1 + \lambda \vec{n}_2) = d_1 + \lambda d_2$
  - (ii) Cartesian form :  $(a_1x + b_1y + c_1z d_1)$ +  $\lambda(a_2x + b_2y + c_2z - d_2) = 0$

#### • Coplanarity of two lines

(i) Vector form : 
$$(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = 0$$

(ii) Cartesian form :

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

Angle between two planes

(i) Vector form : 
$$\cos \theta = \left| \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| |\vec{n}_2|} \right|$$

(ii) Cartesian form :

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$

• Distance of a point from a plane

(i) Vector form :  $=\frac{|\vec{a} \cdot \vec{N} - d|}{|\vec{N}|}$ , where  $\vec{N}$  is normal to the plane.

(ii) Cartesian form : 
$$\frac{ax_1 + by_1 + cz_1 - d}{\sqrt{a^2 + b^2 + c^2}}$$

• Angle between a line and a plane

Vector form :  $\phi = \sin^{-1} \left| \frac{\vec{b} \cdot \vec{n}}{|\vec{b}| |\vec{n}|} \right|$ 

#### LINEAR PROGRAMMING

- **Graphical solution of L.P.P** This method of solving linear programming problem is referred as **Corner Point method**. This method comprises of following steps:
- 1. Find the feasible region of the L.P.P and determine its corner points (vertices).
- 2. Evaluate the objective function Z = ax + by at each corner point. Let *M* and *m* respectively be the largest and smallest values at these points.
- 3. (a) If the feasible region is bounded, *M* and *m* respectively are the maximum and minimum values of the objective function.

(b) If the feasible region is unbounded, then (i) M is the maximum value of the objective function, if the open half plane determined by ax + by > M has no point in common with the feasible region. Otherwise, the objective function has no maximum value.

(ii) Similarly m is the minimum value of the objective function, if the open half plane determined by ax + by < m has no point in common with the feasible region. Otherwise, the objective function has no minimum value.

Note : If two corner points of the feasible region are both optimal solutions of the same type, *i.e.*, both produce the same maximum or minimum, then any point on the line segment joining these two points is also an optimal solution of the same type.

#### PROBABILITY

| Terms                      | Definition                                                                                                                                                   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conditional<br>Probability | If $E_1$ and $E_2$ are any two events, then conditional probability of $E_2$ when Probability                                                                |
|                            | $E_1$ has already occured is given by $P(E_1   E_2) = \frac{P(E_1 \cap E_2)}{P(E_1)}$ , $P(E_2) \neq 0$                                                      |
|                            | Properties of Conditional Probability :                                                                                                                      |
|                            | (i) The conditional probability of an event $E$ given that $F$ has already occurred lies                                                                     |
|                            | between 0 and 1.                                                                                                                                             |
|                            | (ii) Let <i>E</i> and <i>F</i> be events of a sample space <i>S</i> of an experiment, then $P(S   F) P(F   F) = 1$                                           |
|                            | (iii) If <i>A</i> and <i>B</i> are any two events of a sample space <i>S</i> and <i>F</i> is an event of <i>S</i> such that                                  |
|                            | $P(F) \neq 0, \text{ then } P((A \cup B) \mid F) = P(A \mid F) + P(B \mid F) - P((A \cap B) \mid F)$                                                         |
|                            | In particular, if A and B are disjoint events, then $P((A \cup B)   F) = P(A   F) + P(B   F)$                                                                |
|                            | (IV) P(E'   F) = 1 - P(E   F)                                                                                                                                |
| Multiplication             | (i) For two events : If $E_1$ and $E_2$ are two events then                                                                                                  |
| Theorem on                 | $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2   E_1) = P(E_2) \cdot P(E_1   E_2)$ where $P(E_1) \neq 0$ and $P(E_2) \neq 0$                                          |
| Probability                | (ii) For <i>n</i> events $P(E_1 \cap E_2 \cap \cap E_n) = P(E_1) \cdot P(E_2/E_1) \cdot P(E_3   E_1 \cap E_2) \dots P(E_n   E_1 \cap E_2 \cap \cap E_{n-1})$ |
| Independent<br>Events      | (i) Two events $E_1$ and $E_2$ are called independent if $P(E_1   E_2) = P(E_1)$ , $P(E_2) \neq 0$ and                                                       |
|                            | $P(E_2   E_1) = P(E_2), P(E_1) \neq 0.$                                                                                                                      |
|                            | (ii) For independent events $E_1$ and $E_2$ , $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$                                                                        |

| Theorem of Total<br>Probability                                         | Let $\{E_1, E_2,, E_n\}$ be a partition of the sample space <i>S</i> , and suppose that each of the events $E_1, E_2,, E_n$ has non-zero probability of occurrence. Let <i>A</i> be any event associated with <i>S</i> , then                                                                                                              |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | $P(A) = P(E_1) \cdot P(A \mid E_1) + P(E_2) \cdot P(A \mid E_2) + \dots + P(E_n) P(A \mid E_n) = \sum_{i=1}^{n} P(E_i) \cdot P(A \mid E_i)$                                                                                                                                                                                                |
| Bayes' Theorem                                                          | If $E_1, E_2,, E_n$ are <i>n</i> non-empty events which constitute a partition of sample space <i>S</i> , <i>i.e.</i> $E_1, E_2,, E_n$ are pairwise disjoint and $E_1 \cup E_2 \cup \cup E_n = S$ and <i>A</i> is any event                                                                                                                |
|                                                                         | of non-zero probability, then $P(E_i A) = \frac{P(E_i)P(A E_i)}{\sum_{i=1}^{n} P(E_i) \cdot P(A E_i)}$ for $i = 1, 2, 3,, n$                                                                                                                                                                                                               |
| Random Variable                                                         | It is a function whose domain is a sample space and whose range is some set of real numbers. It is often denoted by <i>X</i> . <b>Types of Random Variable</b>                                                                                                                                                                             |
|                                                                         | <ul><li>(i) If random variable takes countable number of distinct values it is called discrete variable.</li><li>(ii) If random variable takes an infinite number of possible values it is called continuous variable.</li></ul>                                                                                                           |
| Probability<br>Distribution<br>of Random<br>Variable                    | $\frac{X  x_1  x_2  x_3 \dots x_n}{P(x)  p_1  p_2  p_3 \dots p_n}, \text{ where } p_i > 0, \sum_{i=1}^n p_i = 1, i = 1, 2, 3, \dots, n \text{ where } x_1, x_2, x_3, \dots, x_n$ are possible values and respective probabilities $p_1, p_2, p_3, \dots, p_n$ of random variable $X$ .                                                     |
| Mean of Random<br>Variable                                              | The mean of a random variable X is also called expectation of X, denoted<br>$E(X) = \mu = x_1 p_1 + x_2 p_2 + \dots x_n p_n = \sum_{i=1}^n x_i p_i$                                                                                                                                                                                        |
| Variance of a<br>Random Variable                                        | Let X be a random variable whose possible values $x_1, x_2,, x_n$ occur with<br>probabilities $p(x_1), p(x_2),, p(x_n)$ respectively $\sigma_x^2 = V(x) = \sum_{i=1}^n x_i^2 p_i - \left(\sum_{i=1}^n x_i p_i\right)^2$                                                                                                                    |
| Standard Deviation                                                      | $\sigma_x = \sqrt{V(x)}$                                                                                                                                                                                                                                                                                                                   |
| Bernoulli Trials                                                        | <ul><li>Trials of a random experiment are Bernoulli trials, if</li><li>(i) They are finite.</li><li>(ii) They are independent of each other.</li><li>(iii) Each trial has two outcomes : success or failure.</li><li>(iv) Probability of success or failure remains the same in each trial.</li></ul>                                      |
| Binomial<br>Distribution                                                | A random variable <i>X</i> which takes values 0, 1, 2,, <i>n</i> follows binomial distribution if its probability distribution function is given by $P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$ , $r = 0, 1, 2$ , <i>n</i> , where $p + q = 1$ , $p, q > 0$ , $p =$ probability of success, $q =$ probability of failure, $n =$ number of trials. |
| Mean, Variance and<br>Standard Deviation<br>of Binomial<br>Distribution | Mean = $np$ , Variance = $npq$ and Standard Deviation = $\sqrt{npq}$                                                                                                                                                                                                                                                                       |

# **Get MTG Books**

# To Revise at your Best & Score High in your Boards

