CLASS 10 - MATHS FORMULA BOOK FOR CBSE BOARD

REAL NUMBERS

- Euclid's Division Lemma
$a=b \times q+r, 0 \leq r<b$.
- For any two positive integers a and b
$\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b$
- For three numbers $a, b \& c$
(i) $\operatorname{HCF}(a, b, c) \times \operatorname{LCM}(a, b, c) \neq a \times b \times c$ where a, b, c are positive integers.
(ii) $\operatorname{LCM}(a, b, c)=\frac{a \times b \times c \times \operatorname{HCF}(a, b, c)}{\operatorname{HCF}(a, b) \times \operatorname{HCF}(b, c) \times \operatorname{HCF}(a, c)}$
(iii) $\operatorname{HCF}(a, b, c)=\frac{a \times b \times c \times \operatorname{LCM}(a, b, c)}{\operatorname{LCM}(a, b) \times \operatorname{LCM}(b, c) \times \operatorname{LCM}(a, c)}$

POLYNOMIALS

- Remainder Theorem : Let $p(x)$ be any polynomial of degree greater than or equal to 1 and a be any real number, if $p(x)$ be divided by linear polynomial $(x-a)$, then the remainder is equal to $p(a)$.
- Factor Theorem : If $p(x)$ is a polynomial of degree greater than or equal to 1 and a be any real number such that
(i) if $p(a)=0$ then $(x-a)$ is a factor of $p(x)$ and
(ii) if $(x-a)$ is a factor of $p(x)$, then $p(a)=0$
- Division Algorithm for Polynomial : $p(x)=$ $q(x) \times g(x)+r(x)$, where $r(x)=0$ or degree of $r(x)<$ degree of $q(x)$.
- If α and β are the zeroes of a quadratic polynomial $a x^{2}+b x+c$, then

$$
\alpha+\beta=-\frac{b}{a} \text { and } \alpha \beta=\frac{c}{a}
$$

- If α, β and γ are the zeroes of a cubic polynomial $a x^{3}+b x^{2}+c x+d$, then
$\alpha+\beta+\gamma=-\frac{b}{a}, \alpha \beta+\beta \gamma+\alpha \gamma=\frac{c}{a}$ and
$\alpha \beta \gamma=-\frac{a}{a}$

SOME USEFUL IDENTITIES

(i) $(x+y)^{2}=x^{2}+y^{2}+2 x y$
(ii) $(x-y)^{2}=x^{2}+y^{2}-2 x y$
(iii) $(x+y)(x-y)=x^{2}-y^{2}$
(iv) $(x+a)(x+b)=x^{2}+(a+b) x+a b$
(v) $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
(vi) $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$

$$
=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

(vii) $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$
(viii) $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}\right.$

$$
-x y-y z-z x)
$$

If $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$
(ix) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(x) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

- If a pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ represents :
(i) Intersecting lines then $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
(one solution)
(ii) Parallel lines, then $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
(no solution)
(iii) Coincident lines, then $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
(infinitely many solutions)

QUADRATIC EQUATIONS

- Roots of the quadratic equation
$a x^{2}+b x+c=0, a, b, c \in R$ and $a \neq 0$ is given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} ; D=b^{2}-4 a c
$$

- Nature of Roots
(i) If $D>0$, distinct and unequal real roots.
(ii) If D is a perfect square, the equation has unequal-rational roots.
(iii) If $D=0$, real and equal roots and each root is $\frac{-b}{2 a}$.
(iv) If $D<0$, no real roots.
- Formation of a quadratic equation $x^{2}-$ (sum of roots) $x+$ product of roots $=0$

ARITHMETIC PROGRESSIONS

- The $n^{\text {th }}$ term a_{n} of an A.P. is
$a_{n}=a+(n-1) d ;$
$a=$ first term
$n=$ number of terms
$d=$ common difference
- \quad The sum to n terms of an A.P.
$S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$
Also, $S_{n}=\frac{n}{2}\{a+l\}$

TRIANGLES

- Basic Proportionality Theorem (B.P.T.) (Thales

Theorem) : In a triangle, a line drawn parallel to one side, to intersect the other sides in distinct points, divides the two sides in the same ratio. In $\triangle A B C$, if $D E \| B C$.

Then (i) $\frac{A D}{D B}=\frac{A E}{E C}$
(ii) $\frac{A B}{A D}=\frac{A C}{A E}$
(iii) $\frac{A B}{D B}=\frac{A C}{E C}$.

- AAA Similarity Criterion : If two triangles are equiangular, then they are similar.
- AA Similarity Criterion : If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.
- SSS Similarity Criterion : If the corresponding sides of two triangles are proportional, then they are similar.
- SAS Similarity Criterion : If in two triangles, one pair of corresponding sides are proportional and the included angles are equal, then the two triangles are similar.
- Area of Similar Triangles: The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides, altitudes, medians, angle bisector segments.
- The Pythagoras Theorem : In a right triangle, the square of the hypotenuse is equal to the sum of the square of other two sides. In the given figure,
 $A C^{2}=A B^{2}+B C^{2}$.

CO-ORDINATE GEOMETRY

- If $x \neq y$, then $(x, y) \neq(y, x)$.
- If $(x, y)=(y, x)$, then $x=y$.
- Distance between the points $A\left(x_{1}, y_{1}\right)$, $B\left(x_{2}, y_{2}\right)$ is $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
- If A, B and C are collinear, then $A B+B C=A C$ or $A C+C B=A B$ or $B A+A C=B C$.
- The points which divides the line segment joining the points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ in the ratio $l: m$
(i) Internally : $\left(\frac{l x_{2}+m x_{1}}{l+m}, \frac{l y_{2}+m y_{1}}{l+m}\right) ;(l+m \neq 0)$
(ii) Externally: $\left(\frac{l x_{2}-m x_{1}}{l-m}, \frac{l y_{2}-m y_{1}}{l-m}\right) ;(l \neq m)$
- The mid-point of the line segment joining $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
- Centroid of a $\triangle A B C$, with vertices $A\left(x_{1}, y_{1}\right)$, $B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ is
$G \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.
- The area of the triangle formed by the points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$

$$
=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|
$$

INTRODUCTION TO TRIGONOMETRY

- Trigonometric Ratios in $\triangle A B C$
$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{A C}{B C}$ $\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{A B}{B C} \quad A C_{B}$
$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}=\frac{A C}{A B}$
$\cot \theta=\frac{\text { Base }}{\text { Perpendicular }}=\frac{A B}{A C}$
$\sec \theta=\frac{\text { Hypotenuse }}{\text { Base }}=\frac{B C}{A B}$
$\operatorname{cosec} \theta=\frac{\text { Hypotenuse }}{\text { Perpendicular }}=\frac{B C}{A C}$
- $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$ or $\sin \theta=\frac{1}{\operatorname{cosec} \theta}$
- $\sec \theta=\frac{1}{\cos \theta}$ or $\cos \theta=\frac{1}{\sec \theta}$
- $\cot \theta=\frac{1}{\tan \theta}$ or $\tan \theta=\frac{1}{\cot \theta}$
- $\tan \theta=\frac{\sin \theta}{\cos \theta}$
- $\cot \theta=\frac{\cos \theta}{\sin \theta}$

T-ratios θ	0	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
$\cot \theta$	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
$\operatorname{cosec} \theta$	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	

- Trigonometric Ratios of Complementry Angles
$\sin \left(90^{\circ}-\theta\right)=\cos \theta, \quad \cos \left(90^{\circ}-\theta\right)=\sin \theta$
$\tan \left(90^{\circ}-\theta\right)=\cot \theta, \quad \cot \left(90^{\circ}-\theta\right)=\tan \theta$
$\sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta, \operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta$
- Trigonometric Identities
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$

CIRCLES

- Tangent to a circle at a point is perpendicular to the radius through the point of contact.
- From a point, lying outside a circle, two and only two tangents can be drawn to it.
- The lengths of two tangents drawn from an external point are equal.

AREAS RELATED TO CIRCLE

- Circumference of a circle $=2 \pi r$, where r is the radius of the circle.
- Perimeter of a semicircle with radius r is $2 r+\pi r$.
- Area of a circle with radius r is given by $A=\pi r^{2}$.
- Area of a semicircle of radius $r=\frac{\pi r^{2}}{2}$
- Area of a ring whose outer and inner radii are R and r respectively
$=\pi\left(R^{2}-r^{2}\right)=\pi(R+r)(R-r)$
- Perimeter of sector $O A C B O=2 r+\frac{2 \pi r \theta}{360^{\circ}}$.
- Area of minor sector $O A C B O=\frac{\pi r^{2} \theta}{360^{\circ}}$.

Also, the area of a sector is given by $A=\frac{1}{2} l r$, where $l=\left(\frac{\pi r \theta}{180^{\circ}}\right)=$ length of $\operatorname{arc} A C B$.

- Area of major sector $O A D B O=\pi r^{2}-$ area of minor sector $O A C B O$.

- Area of the minor segment $P R Q P$
$=\frac{\pi r^{2} \theta}{360^{\circ}}-\frac{1}{2} r^{2} \sin \theta$
- Area of major segment PSQP $=\pi r^{2}-$ area of minor segment $P R Q P$.

SURFACE AREAS AND VOLUMES

- Cube

If a be the edge of a cube, then
Volume $=a^{3}$
Total surface area $=6 a^{2}$
Area of four walls $=4 a^{2}$
Diagonal of cube $=\sqrt{3} \times$ Edge $=\sqrt{3} a$

Edge of a cube $=\sqrt[3]{\text { Volume }}$

Cuboid

If l be the length, b be the breadth and h be the height of the cuboid, then
Volume $=$ length \times breadth \times height $=l \times b \times h$
Total surface area $=2(l b+b h+h l)$
Area of four walls of a room $=2 \times(l+b) h$
Diagonal of a cuboid $=\sqrt{l^{2}+b^{2}+h^{2}}$

- Cylinder

If r be the radius of the cylinder and h be the height of the cylinder, then
Volume $=\pi r^{2} h$
Curved surface area $=2 \pi r h$
Total surface area $=2 \pi r(r+h)$

- Hollow Cylinder

If R is the outer radius, r is the inner radius and h be the height of the hollow cylinder, then

Volume $=\pi\left(R^{2}-r^{2}\right) h$
Total surface area $=2 \pi(R+r)(h+R-r)$

- Cone

If r, h and l denote respectively the radius of base, height and slant height of a right circular cone, then
Volume $=\frac{1}{3} \pi r^{2} h$
Curved surface area $=\pi r l=\pi r\left(\sqrt{h^{2}+r^{2}}\right)$
Total surface area $=$ curved surface area + area of the base $=\pi r l+\pi r^{2}=\pi r(l+r)$

- Sphere

If r is the radius of the sphere, then
Surface area $=4 \pi r^{2}$
Volume $=\frac{4}{3} \pi r^{3}$

- Hollow Sphere

If R is the outer radius and r is the inner radius of the hollow sphere, then

Volume $=\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$

- Hemisphere

If r is the radius of the hemisphere, then
Curved surface area $=2 \pi r^{2}$
Total surface area $=3 \pi r^{2}$
Volume $=\frac{2}{3} \pi r^{3}$

- Frustum of a Cone

If h is the height, l the slant height and r_{1} and r_{2} the radii of the circular bases $\left(r_{1}>r_{2}\right)$ of a frustum of a cone, then
Volume $=\frac{\pi}{3}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right) h$
Lateral surface area $=\pi\left(r_{1}+r_{2}\right) l$
Total surface area $=\pi\left\{\left(r_{1}+r_{2}\right) l+r_{1}^{2}+r_{2}^{2}\right\}$
Slant height of the frustum, $l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$

STATISTICS

- Range : Highest observation - Lowest observation
- Class size : Upper class limit - Lower class limit
- Class marks :

Upper class limit+Lower class limit

- For Ungrouped Data
(i) Mean
$\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\ldots \ldots+x_{n}}{n}$.
(ii) Median

Case-I : If the number of items n in the data is odd, then

Median $=$ value of $\left(\frac{n+1}{2}\right)^{\text {th }}$ item.
Case-II : If the total number of items n in the data is even, then

Median $=\frac{1}{2} \times$ value of $\left[\left(\frac{n}{2}\right)^{\text {th }}+\left(\frac{n}{2}+1\right)^{\text {th }}\right]$ item
(iii) Mode $=3$ Median -2 Mean

- For Grouped Data
(i) Mean (Direct Method)
$\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$
(ii) Mean (Mean Deviation Method)
$\bar{x}=a+\frac{\Sigma f_{i}\left(x_{i}-a\right)}{\Sigma f_{i}}=a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}$,
where, $a=$ assumed mean,
$\Sigma f_{i}=$ total frequency,$d_{i}=x_{i}-a$.
(iii) Mean (Step Deviation Method)
$\bar{x}=a+\frac{\Sigma f_{i}\left(\frac{x_{i}-a}{h}\right)}{\Sigma f_{i}} \times h=a+h\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right)$
where, $a=$ assumed mean, $\Sigma f_{i}=$ total frequency,
$h=$ class-size, $u_{i}=\frac{x_{i}-a}{h}$.
(iv) $\operatorname{Median}\left(\boldsymbol{M}_{e}\right)=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$,
where, $l=$ lower limit of the median class, $n=$ number of observations,
$c f=$ cumulative frequency of the class preceding the median class,
$f=$ frequency of the median class,
$h=$ class size.
$\operatorname{Mode}\left(M_{o}\right)=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$,
where, $l=$ lower limit of modal class, $h=$ size of the class-interval,
$f_{1}=$ frequency of the modal class,
$f_{0}=$ frequency of the class preceding the modal class,
$f_{2}=$ frequency of the class suceeding the modal class.

PROBABILITY

- Probability of an event $E=P(E)=\frac{n(E)}{n(S)}$
- $\quad P(E)+P(\bar{E})=1$
- For an event E, we have $0 \leq P(E) \leq 1$. () () ()

The Ultimate Resource Book to Practice \& Score High in Your 10th Boards

ScoreMere

SCIENCE

 SSUED BY CBSE BDAR刁 FOR 2019 EXAMIVATION

- 20 Sample Question Papers (SQPs) with Blueprint as Design issued by CBSE
- Latest CBSE Sample Question Paper 2018-19
© Self Evaluation Sheet included to Check your readiness
- Important tips for exam preparation
- Help students to plan strategy to SCORE MORE in Boards
- Free Online Support also incorporated

