PRACTICE PAPER

PHYSICS

1. Four charges q_{1}, q_{2}, q_{3} and q_{4} of same magnitude are fixed along the x-axis at $x=-2 a,-a,+a$ and $+2 a$ respectively. A positive charge of $3 \mu \mathrm{C}$ is placed on the positive y-axis at a distance $r>0$. Direction of net electric force on charge $3 \mu \mathrm{C}$ will be along $-x$ direction if
(a) q_{1}, q_{2}, q_{3} and q_{4} are all positive
(b) q_{1} and q_{2} are positive but q_{3} and q_{4} are negative
(c) q_{1} and q_{4} are positive but q_{2} and q_{3} are negative
(d) q_{1} and q_{3} are positive but q_{2} and q_{4} are negative.
2. If $9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity on the earth's surface, the gain in potential energy of an object of mass 2 kg raised from the surface of the earth to a height equal to the radius of earth is (radius of earth is 6400 km)
(a) $6.27 \times 10^{7} \mathrm{~J}$
(b) $1.25 \times 10^{8} \mathrm{~J}$
(c) $3.14 \times 10^{7} \mathrm{~J}$
(d) $5.0 \times 10^{8} \mathrm{~J}$
3. A block of mass 1 kg is placed on the top of a bigger block of mass 10 kg as shown in figure. All the surfaces are frictionless. The system is released from rest. Find the distance moved by the bigger block at the instant the smaller block reaches the ground.
(a) 0.80 m
(b) 2.2 m
(c) 4.4 m
(d) 0.44 m

4. Which of the following statements is/are correct?
I. For practical purposes, the earth is used as a reference at zero potential in electrical circuits.
II. The electrical potential of a sphere of radius R with charge Q uniformly distributed on the surface is given by $\frac{Q}{4 \pi \varepsilon_{0} R}$.
III. Work done in carrying a point charge from one point to another in an electrostatic field depends on the path along which the point charge is carried.
(a) I and II only
(b) II only
(c) III only
(d) I, II and III.
5. Four persons A, B, C and D initially at the four corners of a square of side 10 m . Each person now moves with a uniform speed $20 \mathrm{~m} / \mathrm{s}$ in such a way that A always moves directly towards B, B directly towards C, C directly towards D and D directly towards A. The four persons will meet after a time
(a) 2 s
(b) 4 s
(c) 5 s
(d) 10 s
6. Two identical ladders are arranged as shown in the figure. Mass of each ladder is 10 kg and length 5 m . A block of mass m hangs from point P. Ifthe system is in equilibrium, then find the magnitude of frictional force acting on the base of the ladder. ($m=5 \mathrm{~kg}, g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) 130 N
(b) 260 N
(d) 6.5 N
(d) 10 N

7. Find the rms current drawn from an AC source of 50 V (rms) when
(i) frequency is very large
(ii) frequency is very small.
(a) (i) 0.25 A
A (ii) 0.5 A
(b) (i) 0.2 A
(ii) 0.4 A
(c) (i) 0.5 A
(ii) 0.25 A
(d) (i) 0.5 A
(ii) 1.0 A

8. A spring of force constant k is cut into two pieces such that one piece is five times the length of the other. Then, the longer piece will have a force constant of
(a) $\frac{k}{5}$
(b) $5 k$
(c) $\frac{6 k}{5}$
(d) $\frac{5 k}{6}$
9. The radius of uniform solid sphere is measured to be $(6.50 \pm 0.20) \mathrm{cm}$, and its mass is measured to be $(1.85 \pm 0.02) \mathrm{kg}$. Find the density of the sphere.
(a) $(1.61 \pm 0.20) \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(b) $(1.60 \pm 0.22) \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(c) $(1.61 \pm 0.17) \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(d) $(1.60 \pm 0.17) \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
10. Photons of wavelength λ are incident on a metal. The most energetic photoelectrons ejected from the metal are bent into a circular arc of radius R by a uniform magnetic field of magnitude B. Find the work function of metal.
(a) $\frac{h c}{\lambda}-\frac{e^{2} B^{2} R^{2}}{m_{e}}$
(b) $\frac{h c}{\lambda}+\frac{e^{2} B^{2} R^{2}}{2 m_{e}}$
(c) $\frac{h c}{\lambda}-\frac{e^{2} B^{2} R^{2}}{3 m_{e}}$
(d) $\frac{h c}{\lambda}-\frac{e^{2} B^{2} R^{2}}{2 m_{e}}$
11. A cubical block of mass m and edge l floats in a liquid of density ρ. If it is given a small vertical displacement from equilibrium so that it undergoes oscillation with a time period
(a) $2 \pi \sqrt{\frac{a}{g}}$
(b) $2 \pi \sqrt{\frac{m}{\rho g}}$
(c) $\pi \sqrt{\frac{a}{g}}$
(d) $\pi \sqrt{\frac{m}{\rho g}}$
12. A standing wave pattern is set up by electromagnetic waves between two metal sheets 3.0 m apart, which is the shortest distance between the plates that produces standing wave pattern. Find the frequency of electromagnetic waves. (Speed of electromagnetic wave $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
(a) 75 MHz
(b) 50 MHz
(c) 25 MHz
(b) 100 MHz
13. Two identical vessels with their bases at the same level each contain liquid of density $1050 \mathrm{~kg} / \mathrm{m}^{3}$. The height of the liquid in one vessel is 2.0 m and in the other is 1.50 m . The cross-sectional area of each vessel is $1.5 \mathrm{~m}^{2}$. Find the work done by gravity in equalising the levels when vessels are connected.
(a) 600 J
(b) 900 J
(c) 840 J
(d) 965 J
14. Three rods made of same material and having the same cross-section have been joined as shown in the figure. Each rod is of the same length. The left and right ends are kept at $20^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. The temperature of junction of the three rods will be
(a) $73^{\circ} \mathrm{C}$
(b) $60^{\circ} \mathrm{C}$
(c) $50^{\circ} \mathrm{C}$
(d) $80^{\circ} \mathrm{C}$

15. There is a small air bubble inside a glass sphere ($\mu=1.5$) of radius 20 cm . The bubble is 8.0 cm below the surface and is viewed normally from the outside as shown in the figure. What is the apparent depth of the bubble?
(a) 6.15 cm above the surface.
(b) 6.15 cm below the surface.
(c) 3.5 cm below the surface.
(d) 3.5 cm above the surface.

16. A material having refractive index 1.40 is used as an antireflecting coating on a piece of glass ($\mu=1.50$). What should minimum thickness of this film be to minimize reflection of 560 nm light?
(a) 93 nm
(b) 186 nm
(c) 100 nm
(d) 200 nm
17. Match the following.

18. The activity of a radioactive sample is measured as N_{0} counts per minute at $t=0$ and N_{0} / e counts per minute at $t=5$ minutes. The time (in minutes) at which the activity reduces to half its value is
(a) $\log _{e} \frac{2}{5}$
(b) $\frac{5}{\log _{e} 2}$
(c) $5 \log _{10} 2$
(d) $5 \log _{e} 2$
19. A radio transmitter operates at a frequency of 880 kHz and a power of 10 kW . The number of photons emitted per second are
(a) 1.7×10^{31}
(b) 1327×10^{34}
(c) 13.27×10^{34}
(d) 0.075×10^{-34}
20. The output Y of the logic circuit shown in figure is represented as

(a) $\bar{A}+\overline{B \cdot C}$
(b) $A+\bar{B} \cdot C$
(c) $\overline{A+B \cdot C}$
(d) $\overline{A+\bar{B} \cdot C}$

Numerical Value Type

21. The photoelectric work function of a metal is 1 eV . Light of wavelength $3000 \AA$ falls on it. Then the velocity with which the photoelectrons come out of the metal is $x \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ where the value of x is \qquad —.
22. A bird of mass 1.23 kg is able to hover by imparting a downward velocity of $10 \mathrm{~m} \mathrm{~s}^{-1}$ uniformly to air of density $\rho \mathrm{kg} \mathrm{m}^{-3}$ over an effective area $0.1 \mathrm{~m}^{2}$. If the acceleration due to gravity is $10 \mathrm{~m} \mathrm{~s}^{-2}$, then the magnitude of $\rho\left(\mathrm{in} \mathrm{kg} \mathrm{m}^{-3}\right)$ is \qquad —.
23. A potential difference of 220 V is maintained across a 12000 ohm rheostat $A B$ as shown in figure The voltmeter V has 220 V a resistance of 6000 ohm and point C is at one fourth of the distance from A to B. The reading in the voltmeter (in V) is \qquad

24. Two blocks of masses 2.9 kg and 1.9 kg are suspended from a rigid support S by two inextensible wires each of length 1 m . The upper wire has negligible mass and the lower wire has a uniform mass of $0.2 \mathrm{~kg} / \mathrm{m}$. The whole system of blocks have an upward acceleration of $0.2 \mathrm{~m} \mathrm{~s}^{-2}$. The tension (in N) at the midpoint of upper wire is \qquad —.
(Given : $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$).

25. In the given figure, the equivalent resistance (in Ω) between A and B is \qquad .

HINTS \& EXPLANATIONS

PHYSICS

1. (d): In magnitude, $F_{2}=F_{3}$ and $F_{1}=F_{4}$ Resultant of F_{2} and F_{3} will be along $-x$ direction, while resultant of F_{1} and F_{4} will be along $+x$ direction.
But resultant of F_{2} and F_{3} is larger than that of F_{1} and F_{4}. Hence, direction of net electric force will be along $-x$
 direction.

$$
\begin{equation*}
N=N_{2}+M g+\frac{m g}{2} \tag{iii}
\end{equation*}
$$

Balancing torque about O,
and $M g \frac{L}{2} \cos \theta+f L \sin \theta=N L \cos \theta$
or $\frac{M g}{2} \cos \theta+f \sin \theta=N \cos \theta$
From eqn. (ii) and (iii), we get $N=M g+\frac{m g}{2}$

$$
\begin{aligned}
& f \sin \theta=\left(\frac{M+m}{2}\right) g \cos \theta \\
\Rightarrow & f=\left(\frac{M+m}{2}\right) g \cot \theta \\
\Rightarrow & f=\frac{10+5}{2} \times 10 \times \cot 30^{\circ} \approx 130 \mathrm{~N}
\end{aligned}
$$

7. (a) : (i) When ωL is very large, Z is large for lower branch so current through it negligible.
Also, $\frac{1}{\omega C}$ will be negligible compared to R for the upper branch, so current in upper branch

$$
I=\frac{\varepsilon}{Z} \approx \frac{\varepsilon}{R}=\frac{50}{200}=0.25 \mathrm{~A}
$$

(ii) Now, $\frac{1}{\omega C}$ is very large in the upper branch and ωL is very small compared to R in the lower branch. Current in lower branch

$$
I=\frac{V}{Z} \approx \frac{V}{R}=\frac{50}{100}=0.5 \mathrm{~A}
$$

8. (c) : For a spring, $l_{1} k_{1}=l_{2} k_{2}=l k$

As per question $l_{1}: l_{2}=1: 5$

$$
l_{2}=5 l_{1} \therefore l_{1} k_{1}=5 l_{1} k_{2} \Rightarrow k_{2}=k_{1} / 5
$$

Also, $l_{1}+l_{2}=l$
$\frac{k l}{k_{1}}+\frac{k l}{k_{2}}=l \Rightarrow \frac{k}{k_{1}}+\frac{5 k}{k_{1}}=1 \Rightarrow \frac{6 k}{k_{1}}=1$
$\Rightarrow k_{1}=6 k \quad \therefore k_{2}=6 k / 5$
9. (c): Here, $r=(6.50 \pm 0.20) \times 10^{-2} \mathrm{~m}$
$m=(1.85 \pm 0.02) \mathrm{kg}$
$\rho=\frac{m}{\left(\frac{4}{3}\right) \pi r^{3}}$
$\frac{\Delta \rho}{\rho}=\frac{\Delta m}{m}+\frac{3 \Delta r}{r} \Rightarrow \frac{\Delta \rho}{\rho}=\frac{0.02}{1.85}+\frac{3(0.20)}{6.50}=0.103$
$\rho=\frac{1.85}{\left(\frac{4}{3}\right) \pi\left(6.5 \times 10^{-2}\right)^{3}}=1.61 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
$\Delta \rho=\left(1.61 \times 10^{3}\right) \times 0.103 \approx 0.17 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
$\rho+\Delta \rho=(1.61 \pm 0.17) \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
10. (d): For electron in circular orbit in a magnetic field,

Centripetal force, $q v B=\frac{m_{e} v^{2}}{R}$ or $m_{e} v=e B R$
$K_{\text {max }}=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m_{e}}=\frac{e^{2} B^{2} R^{2}}{2 m_{e}}$
From Einstein's photoelectric equation,
$K_{\text {max }}=\frac{h c}{\lambda}-\phi$
$\phi=\frac{h c}{\lambda}-K_{\max }=\frac{h c}{\lambda}-\frac{e^{2} B^{2} R^{2}}{2 m_{e}}$
11. (a): Let h be the length of block immersed in liquid as shown in figure. When block is floating,
$m g=A h \rho g$
Ifthe block is given vertical displacement y then the effective restoring force is
$F=-[A(h+y) \rho g-m g]=-[A(h+y) \rho g-A h \rho g]=-A \rho g y$ $F \propto-y$ i.e., it follows SHM,
$\therefore T=2 \pi \sqrt{\frac{m}{A \rho g}}=2 \pi \sqrt{\frac{\rho a^{3}}{a^{2} \rho g}}=2 \pi \sqrt{\frac{a}{g}}$
12. (b): In fundamental mode,
$\frac{\lambda}{2}=L \Rightarrow \lambda=2 L$
$\lambda=2 \times 3=6 \mathrm{~m}$

Frequency of wave, $v=\frac{c}{\lambda}$
$v=\frac{3 \times 10^{8}}{6}=0.5 \times 10^{8} \mathrm{~Hz}=50 \mathrm{MHz}$
13. (d) : Let h be level in equilibrium.

As volume of water remains same so,
$A h_{1}+A h_{2}=2 A h$
$h=\frac{h_{1}+h_{2}}{2}$

Work done by gravity $=U_{i}-U_{f}$
$=\left(m_{1} g \frac{h_{1}}{2}+m_{2} g \frac{h_{2}}{2}\right)$

$$
-\left(m_{1}+m_{2}\right) g \frac{h}{2}
$$

$=\frac{A h_{1} \rho g h_{1}}{2}+\frac{A h_{2} \rho g h_{2}}{2}-\left(A h_{1} \rho+A h_{2} \rho\right) g\left(\frac{h_{1}+h_{2}}{4}\right)$
$W=\frac{\rho A g}{4}\left[2 h_{1}^{2}+2 h_{2}^{2}-\left(h_{1}+h_{2}\right)\left(h_{1}+h_{2}\right)\right]$
$=\frac{\rho A g}{4}\left(h_{1}-h_{2}\right)^{2}=\frac{1050 \times 1.5 \times 9.8}{4}(2.0-1.5)^{2}$
$W=965 \mathrm{~J}$
14. (a) : Let T be the temperature of the junction.
Thermal resistance of all the three rods is equal.

Rate of heat flow through $B D+$ Rate of heat flow through
$B C=$ Rate of heat flow through $A B$
$\frac{100-T}{l}+\frac{100-T}{l}=\frac{T-20}{l}$
where l is the length of each rod.
$200-2 T=T-20 \Rightarrow 3 T=220^{\circ} \mathrm{C}$ or $T=\frac{220}{3}=73^{\circ} \mathrm{C}$
15. (b) : Here $u=-8 \mathrm{~cm}$
$R=-20 \mathrm{~cm}, \mu_{1}=1.5, \mu_{2}=1$
Using refraction formula,
$\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$

$\Rightarrow \frac{1}{v}-\frac{1.5}{-8}=\frac{1-1.5}{-20} \Rightarrow \frac{1}{v}+\frac{1.5}{8}=\frac{0.5}{20}=\frac{1}{40}$
$\frac{1}{v}=\frac{1}{40}-\frac{1.5}{8}=\frac{1-7.5}{40}=\frac{-6.5}{40} \Rightarrow v=-6.15 \mathrm{~cm}$
\therefore Bubble will be 6.15 cm below the surface.
16. (c) : There will be two phase reversals caused by reflection, one at top and one at the bottom surface of coating.
\therefore For destructive infereance,

$$
2 \mu t=\left(m+\frac{1}{2}\right) \lambda \Rightarrow t=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 \mu}
$$

For minimum thickness of the film, $m=0$
$\therefore t=\frac{1}{2} \times \frac{560 \mathrm{~nm}}{2 \times 1.4}=100 \mathrm{~nm}$
17. (b) : A-q; B-s; C -r ; D - p
18. (d) : According to activity law
$R=R_{0} e^{-\lambda t}$
where, $R_{0}=$ initial activity at $t=0$
$R=$ activity at time $t, \lambda=$ decay constant
According to given problem,
$R_{0}=N_{0}$ counts per minute
$R=N_{0} / e$ counts per minute at $t=5$ minutes
Substituting these values in equation (i), we get
$\frac{N_{0}}{e}=N_{0} e^{-5 \lambda}$
$e^{-1}=e^{-5 \lambda}$
$e^{-1}=e^{-5 \lambda}$
$5 \lambda=1$ or $\lambda=\frac{1}{5}$ per minute
At $t=T_{1 / 2}$, the activity R reduces to $\frac{R_{0}}{2}$.
where $T_{1 / 2}=$ half life of a radioactive sample.
From equation (i), we get
$\frac{R_{0}}{2}=R_{0} e^{-\lambda T_{1 / 2}}$
$e^{\lambda T_{1 / 2}}=2$
Taking natural logarithms of both sides of above equation, we get
$\lambda T_{1 / 2}=\log _{e} 2$
or $T_{1 / 2}=\frac{\log _{e} 2}{\lambda}=\frac{\log _{e} 2}{\left(\frac{1}{5}\right)}=5 \log _{e} 2$ minutes
19. (a) : Power $=n h v$
or $n=\frac{\text { Power }}{h v}=\frac{10 \times 10^{3}}{6.6 \times 10^{-34} \times 880 \times 10^{3}}=\frac{10^{34}}{6.6 \times 88}$
or $n=1.7 \times 10^{-3} \times 10^{34}=1.7 \times 10^{31}$
20. (d) : At logic gate I, the Boolean expression is $Y^{\prime}=\bar{B} \cdot C$
At logic gate II, the Boolean expression is

$$
Y^{\prime \prime}=A+(\bar{B} \cdot C)
$$

At logic gate III, the Boolean expression is

$$
Y=\overline{A+(\bar{B} \cdot C)}
$$

21. (1) : Incident energy $E=h v=\frac{h c}{\lambda}$
or $E($ in eV $)=\frac{12400}{\lambda(\AA)}(\mathrm{eV} \AA)=\frac{12400(\mathrm{eV} \AA)}{3000(\AA)}=4.13 \mathrm{eV}$
According to Einstein's photoelectric equation,
Incident energy $=$ work function + kinetic
energy of emitted photoelectrons
$h v=\phi_{0}+K$ or $K=h v-\phi_{0}=4.13-1=3.13 \mathrm{eV}$
or $\frac{1}{2} m v^{2}=3.13 \times 1.6 \times 10^{-19}$
or $v^{2}=\frac{3.13 \times 1.6 \times 10^{-19} \times 2}{9.1 \times 10^{-31}}$ or $v=1 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
22. (1.23) : If the wings of the bird sweeps out a mass δm of air in time δt, then the upward force exerted on the bird is $F=u \frac{\delta m}{\delta t}=u \frac{\delta m}{\delta x} \times \frac{\delta x}{\delta t}=u^{2} \frac{\delta m}{\delta x} \quad\left(\because u=\frac{\delta x}{\delta t}\right)$ where $F=m g$ and u is the downward velocity.
Force per unit area is
$\frac{F}{A}=u^{2} \frac{\delta m}{A \delta x}=u^{2} \times \frac{\text { mass swept }}{\text { volume swept }}=u^{2} \times \rho$
or $\frac{m g}{A}=\rho u^{2}$
or $\quad \rho=\frac{m g}{A u^{2}}=\frac{1.23 \times 10}{0.1 \times(10)^{2}}=1.23 \mathrm{~kg} \mathrm{~m}^{-3}$
23. (40) : As in case of linear rheostat, $R \propto$ length L
$\therefore \quad \frac{R_{A C}}{R_{A B}}=\frac{A C}{A B}$
Here, $R_{A B}=12000 \Omega$
and $A C=\frac{1}{4} A B$
$\therefore \quad R_{A C}=12000 \times \frac{1}{4}=3000 \Omega$

As the resistance $R_{A C}(=3000 \Omega)$ is in parallel with voltmeter of resistance 6000Ω. Therefore, the effective resistance between points A and C will be
$R_{A C}^{\prime}=\frac{3000 \times 6000}{(3000+6000)}=2000 \Omega$
For resistance between points B and $C, R_{B C}$ and $R_{A C}^{\prime}$ are in series. Therefore, the voltmeter reading will be
$V_{A C}=\frac{R_{A C}^{\prime}}{\left(R_{B C}+R_{A C}^{\prime}\right)} V_{A B}=\frac{2000}{(9000+2000)} \times 220=40 \mathrm{~V}$
24. (50) : Applying Newton's second law of motion,
$T_{1}-(2.9+0.2+1.9) 9.8$
$=(2.9+0.2+1.9) 0.2$
$T_{1}=49+1=50 \mathrm{~N}$
25. (20) :

Applying Kirchhoff's law,
For loop PQVWP :
$10 I_{1}+10\left(I_{1}-I_{2}\right)-5\left(I-I_{1}\right)=0 \Rightarrow 5 I_{1}-2 I_{2}=I$
For loop $Q R U V Q$:
$20 I_{2}+20\left(I_{2}-I_{3}\right)-10\left(I_{1}-I_{2}\right)-10\left(I-I_{2}\right)=0$
$\Rightarrow 6 I_{2}-2 I_{3}-I_{1}=I$
For loop RSTUR :
$30 I_{3}-20\left(I_{2}-I_{3}\right)-15\left(I-I_{3}\right)=0 \Rightarrow 13 I_{3}-4 I_{2}=3 I$
For loop AWVUTBA :
$5\left(I-I_{1}\right)+10\left(I-I_{2}\right)+15\left(I-I_{3}\right)=E$
$\Rightarrow 30 I-5 I_{1}-10 I_{2}-15 I_{3}=E$
Solving equation (i), (ii) and (iii), we get
$I_{1}=I / 3, I_{2}=I / 3$ and $I_{3}=I / 3$
From (iv),
$30 I-\frac{5}{3} I-\frac{10}{3} I-\frac{15}{3} I=I R_{e q}$ (Ohm's law)
$\Rightarrow 20 I=I R_{e q} \Rightarrow R_{e q}=20 \Omega$.

