

SAMPLE QUESTION PAPER MARKING SCHEME SUBJECT: MATHEMATICS- STANDARD CLASS X

SECTION - A

1	(c) 35	1
2	(b) $x^2 - (p+1)x + p = 0$	1
3	(b) 2/3	1
4	(d) 2	1
5	(c) (2,-1)	1
6	(d) 2:3	1
7	(b) tan 30°	1
8	(b) 2	1
9	(c) $x = \frac{ay}{a+b}$	1
10	(c) 8cm	1
11	(d) $3\sqrt{3}$ cm	1
12	(d) $9\pi cm^2$	1
13	(c) 96 cm^2	1
14	(b) 12	1
15	(d) 7000	1
16	(b) 25	1
17	(c) 11/36	1
18	(a) 1/3	1
19	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1
20.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1

LEARNING FOR CLASS 10 BOARDS IS NOW MADE SIMPLER

with MTG Books For CBSE Boards!

Study Resources That Covers:

- ✓ Complete Theory From Core
- ✓ Topic-wise Practice for Exhaustive Grip on Concepts
- NCERT in-text and Exemplar Problems
- ✓ Previous Years' Papers and
- ✓ Questions Based On The Latest Syllabus and Pattern

www.mtg.in

SECTION – B

21	Adding the two equations and dividing by 10, we get : $x+y = 10$	1⁄2
	Subtracting the two equations and dividing by -2, we get : $x-y = 1$	1⁄2
	Solving these two new equations, we get, $x = 11/2$	1⁄2
	y = 9/2	1⁄2
22	In $\triangle ABC$,	
	$\angle 1 = \angle 2$	
	$\therefore AB = BD \dots (i)$	1/2
	Given, AD/AE = AC/BD	
	Using equation (i), we get	1/2
	AD/AE = AC/AB(ii)	/2
	In \triangle BAE and \triangle CAD, by equation (ii),	
	AC/AB = AD/AE	1⁄2
	$\angle A = \angle A \text{ (common)}$	
	$\therefore \Delta BAE \sim \Delta CAD$ [By SAS similarity criterion]	1/2
23	$\angle PAO = \angle PBO = 90^{\circ}$ (angle b/w radius and tangent)	1⁄2
	$\angle AOB = 105^{\circ}$ (By angle sum property of a triangle)	1⁄2
	$\angle AQB = \frac{1}{2} \times 105^{\circ} = 52.5^{\circ}$ (Angle at the remaining part of the circle is half the	1

angle subtended by the arc at the centre)

24	We know that, in 60 minutes, the tip of minute hand moves 360°	
	In 1 minute, it will move $=360^{\circ}/60 = 6^{\circ}$	1⁄2
	: From 7:05 pm to 7:40 pm i.e. 35 min, it will move through = $35 \times 6^\circ = 210^\circ$	1⁄2
	: Area of swept by the minute hand in 35 min = Area of sector with sectorial angle θ	
	of 210° and radius of 6 cm	
	$=\frac{210}{360}$ x π x 6^2	1⁄2

 $= \frac{7}{360} x \pi x 6^{2}$ $= \frac{7}{12} x \frac{22}{7} x 6 x 6$ $= 66 \text{cm}^{2}$ ¹/₂

OR

Let the measure of $\angle A$, $\angle B$, $\angle C$ and $\angle D$ be θ_1 , θ_2 , θ_3 and θ_4 respectively Required area = Area of sector with centre A + Area of sector with centre B + Area of sector with centre C + Area of sector with centre D

$$= \frac{\theta_1}{360} \times \pi \times 7^2 + \frac{\theta_2}{360} \times \pi \times 7^2 + \frac{\theta_3}{360} \times \pi \times 7^2 + \frac{\theta_4}{360} \times \pi \times 7^2$$
^{1/2}

$$= \frac{(\theta_1 + \theta_2 + \theta_3 + \theta_4)}{360} \times \pi \times 7^2$$

= $\frac{(360)}{360} \times \frac{22}{7} \times 7 \times 7$ (By angle sum property of a triangle) $\frac{1}{2}$
= 154 cm² $\frac{1}{2}$

25	sin(A+B) = 1 = sin 90, so $A+B = 90$ (i)	1/2
	$\cos(A-B) = \sqrt{3/2} = \cos 30$, so $A-B = 30$ (ii)	1/2
	From (i) & (ii) $\angle A = 60^{\circ}$	1/2
	And $\angle B = 30^{\circ}$	1/2

OR

$\cos\theta - \sin\theta = 1 - \sqrt{3}$	
$\frac{1}{\cos\theta + \sin\theta} = \frac{1}{1 + \sqrt{3}}$	
Dividing the numerator and denominator of LHS by $\cos\theta$, we get	1/2
$1 - \tan \theta$ $1 - \sqrt{3}$	1/2
$\frac{1}{1+\tan\theta} = \frac{1}{1+\sqrt{3}}$	72
Which on simplification (or comparison) gives $\tan\theta = \sqrt{3}$	
$Or \theta = 60^{\circ}$	1/2
	1/2

SECTION - C

	SECTION - C	
26	Let us assume $5 + 2\sqrt{3}$ is rational, then it must be in the form of p/q where p and q are co-prime integers and $q \neq 0$	1
	i.e $5 + 2\sqrt{3} = p/q$	1⁄2
	So $\sqrt{3} = \frac{p-5q}{2q}$ (i)	72 1/2
	Since p, q, 5 and 2 are integers and $q \neq 0$, HS of equation (i) is rational. But LHS of (i) is $\sqrt{3}$ which is irrational. This is not possible.	1/2
	This contradiction has arisen due to our wrong assumption that $5 + 2\sqrt{3}$ is rational. So, $5 + 2\sqrt{3}$ is irrational.	1/2
27	Let α and β be the zeros of the polynomial $2x^2 - 5x - 3$	17
	Then $\alpha + \beta = 5/2$ And $\alpha\beta = -3/2$.	1/2 1/2
	Let 2α and 2β be the zeros $x^2 + px + q$	72
	Then $2\alpha + 2\beta = -p$	1⁄2
	$2(\alpha + \beta) = -p$ 2 x 5/2 =-p	
	So p = -5	1⁄2
	And $2\alpha \ge 2\beta = q$	1⁄2
	$4 \alpha \beta = q$	
	So $q = 4 x - 3/2$	1/-

Become a CBSE topper from this recommended resource book - https://bit.ly/3QNnoOI

1⁄2

=-6

28	Let the actual speed of the train be x km/hr and let the actual time taken be y hours.	1/2
	Distance covered is xy km	72
	If the speed is increased by 6 km/hr, then time of journey is reduced by 4 hours i.e.,	
	when speed is $(x+6)$ km/hr, time of journey is $(y-4)$ hours.	
	\therefore Distance covered =(x+6)(y-4)	
	\Rightarrow xy=(x+6)(y-4)	
	$\Rightarrow -4x + 6y - 24 = 0$	1/2
	$\Rightarrow -2x + 3y - 12 = 0$ (i)	, 2
	Similarly $xy=(x-6)(y+6)$	
	⇒6x-6y-36=0	
	⇒x-y-6=0(ii)	1/2
	Solving (i) and (ii) we get x=30 and y=24	1
	Putting the values of x and y in equation (i), we obtain	
	Distance = (30×24) km =720km.	1/2
	Hence, the length of the journey is 720km.	72
	OR	
	Let the number of chocolates in lot A be x	1/2
	And let the number of chocolates in lot B be y	, -
	\therefore total number of chocolates =x+y	
	Price of 1 chocolate = $\mathbf{\xi} 2/3$, so for x chocolates = $\frac{2}{3}x$	
	and price of y chocolates at the rate of \mathbf{x} 1 per chocolate =y.	
	\therefore by the given condition $\frac{2}{3}x + y = 400$	1/
	$\Rightarrow 2x + 3y = 1200$ (i)	1⁄2
	Similarly $x + \frac{4}{5}y = 460$	1/
	⇒5x+4y=2300 (ii)	1⁄2
	Solving (i) and (ii) we get	
	x=300 and y=200	
	∴x+y=300+200=500	1
	So, Anuj had 500 chocolates.	1⁄2
29	LHS: $\frac{\sin^{3}\theta/\cos^{3}\theta}{1+\sin^{2}\theta/\cos^{2}\theta} + \frac{\cos^{3}\theta/\sin^{3}\theta}{1+\cos^{2}\theta/\sin^{2}\theta}$	1⁄2

$$= \frac{\sin^{3}\theta/\cos^{3}\theta}{(\cos^{2}\theta + \sin^{2}\theta)/\cos^{2}\theta} + \frac{\cos^{3}\theta/\sin^{3}\theta}{(\sin^{2}\theta + \cos^{2}\theta)/\sin^{2}\theta}$$

$$= \frac{\sin^{3}\theta}{\cos\theta} + \frac{\cos^{3}\theta}{\sin\theta}$$

$$= \frac{\sin^{4}\theta + \cos^{4}\theta}{\cos\theta\sin\theta}$$

$$= \frac{(\sin^{2}\theta + \cos^{2}\theta)^{2} - 2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

$$= \frac{1 - 2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

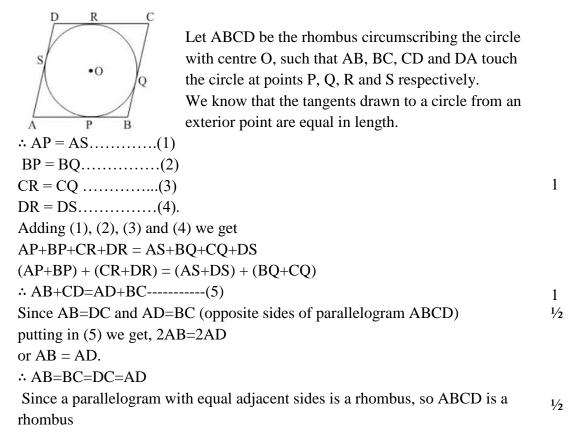
$$= \frac{1 - 2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

$$= \frac{1}{\cos\theta\sin\theta} - \frac{2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

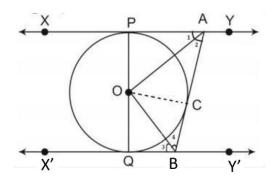
$$= \sec\theta\csce\theta - 2\sin\theta\cos\theta$$

$$\frac{1}{2}$$

30



OR



Join OC

In Δ OPA and Δ OCA	
OP = OC (radii of same circle)	
PA = CA (length of two tangents from an external point)	1
AO = AO (Common)	
Therefore, \triangle OPA $\cong \triangle$ OCA (By SSS congruency criterion)	1⁄2
Hence, $\angle 1 = \angle 2$ (CPCT)	1/2
Similarly $\angle 3 = \angle 4$	
$\angle PAB + \angle QBA = 180^{\circ}$ (co interior angles are supplementary as XY X'Y')	1⁄2
$2\angle 2 + 2\angle 4 = 180^{\circ}$	
$\angle 2 + \angle 4 = 90^{\circ}$ (1)	1⁄2
$\angle 2 + \angle 4 + \angle AOB = 180^{\circ}$ (Angle sum property)	
Using (1), we get, $\angle AOB = 90^{\circ}$	

31	(i)	P (At least one head) = $\frac{3}{4}$	1
	(ii)	P(At most one tail) = $\frac{3}{4}$	I
	(iii)	P(A head and a tail) = $\frac{2}{4} = \frac{1}{2}$	1

SECTION D

32 Let the time taken by larger pipe alone to fill the tank= x hours Therefore, the time taken by the smaller pipe = x+10 hours

Water filled by larger pipe running for 4 hours $=\frac{4}{x}$ litres Water filled by smaller pipe running for 9 hours $=\frac{9}{x+10}$ litres

We know that	
$\frac{4}{4} + \frac{9}{9} - \frac{1}{1}$	1
x + x + 10 = 2	
Which on simplification gives:	1
x ² -16x-80=0	1
$x^2-20x + 4x-80=0$	
x(x-20) + 4(x-20) = 0	
(x+4)(x-20)=0	1
x=-4, 20	1
x cannot be negative.	1/2
Thus, x=20	
x+10= 30	1/2
Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the	1/
tank alone in 30 hours.	1⁄2

OR

Let the usual speed of plane be x km/hr and the reduced speed of the plane be (x-200) km/hr Distance =600 km [Given] According to the question,	1⁄2
(time taken at reduced speed) - (Schedule time) = $30 \text{ minutes} = 0.5 \text{ hours}$.	
$\frac{600}{x-200} - \frac{600}{x} = \frac{1}{2}$ Which on simplification gives: $x^{2} - 200x - 240000 = 0$ $x^{2} - 600x + 400x - 240000 = 0$	1
x(x-600) + 400(x-600) = 0	
(x-600)(x+400) = 0	1
x=600 or x=-400	1/2
But speed cannot be negative.	1/2

\therefore The usual speed is 600 km/hr and
the scheduled duration of the flight is $\frac{600}{600} = 1$ hour

For the Theorem : 33 Given, To prove, Construction and figure

11⁄2

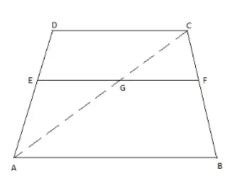
1/2

1⁄2

Proof

11/2

1⁄2



7

34.

Let ABCD be a trapezium DC||AB and EF is a line parallel to AB and hence to DC.

To prove : $\frac{DE}{EA} = \frac{CF}{FB}$		
Construction : Join AC, meeting EF in G.		
Proof:		
In $\triangle ABC$, we have		
GF AB		
$CG/GA=CF/FB \qquad [By BPT] \qquad \dots \dots (1)$	1⁄2	
In \triangle ADC, we have		
EG DC (EF AB & AB DC)	AB & AB DC)	
$DE/EA = CG/GA [By BPT] \dots (2)$	1⁄2	
From (1) & (2), we get, $\frac{DE}{EA} = \frac{CF}{FB}$	1⁄2	
Radius of the base of cylinder (r) = $2.8 \text{ m} = \text{Radius of the base of the cone (r)}$		

Height of the cylinder (h)=3.5 mHeight of the cone (H)=2.1 m. Slant height of conical part (1)= $\sqrt{r^2+H^2}$ $=\sqrt{(2.8)^2+(2.1)^2}$ 1 $=\sqrt{7.84+4.41}$ $=\sqrt{12.25}=3.5$ m 1 Area of canvas used to make tent = CSA of cylinder + CSA of cone 1 $= 2 \times \pi \times 2.8 \times 3.5 + \pi \times 2.8 \times 3.5$ = 61.6 + 30.8 $= 92.4 m^2$ 1 1 Cost of 1500 tents at ₹120 per sq.m $= 1500 \times 120 \times 92.4$ = 16,632,000Share of each school to set up the tents = 16632000/50 = ₹332,640

OR

First Solid Second Solid (i) SA for first new solid (S1): $6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$ 1 = 294 + 77 - 38.5 $= 332.5 \text{cm}^2$ SA for second new solid (S₂): $6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$ 1 = 294 + 77 - 38.51 $= 332.5 \text{ cm}^2$ So $S_1: S_2 = 1:1$ Volume for first new solid (V₁)= 7×7×7 - $\frac{2}{3}\pi$ ×3.5³ = 343 - $\frac{539}{6} = \frac{1519}{6}$ cm³ (ii) 1 Vol

lume for second new solid (V₂)=
$$7 \times 7 \times 7 + \frac{2}{3}\pi \times 3.5^3$$

= $343 + \frac{539}{6} = \frac{2597}{6} \text{ cm}^3$ 1

$$\begin{tabular}{|c|c|c|c|c|c|} \hline Class interval & Frequency & Cumulative Frequency \\ \hline 0-100 & 2 & 2 \\ \hline 100-200 & 5 & 7 \\ \hline 200-300 & x & 7+x \\ \hline 300-400 & 12 & 19+x \\ \hline 400-500 & 17 & 36+x \\ \hline 400-500 & 17 & 36+x \\ \hline 500-600 & 20 & 56+x \\ \hline 600-700 & y & 56+x+y \\ \hline 700-800 & 9 & 65+x+y \\ \hline 800-900 & 7 & 72+x+y \\ \hline 900-1000 & 4 & 76+x+y \\ \hline \end{tabular}$$

35 Median = 525, so Median Class = 500 - 600

11/2

1/2

$76+x+y=100 \Rightarrow x+y=24$	(i)	1
Median = $1 + \frac{\frac{n}{2} - cf}{f} \ge h$		1⁄2

Since, l=500, h=100, f=20, cf=36+x and n=100

Therefore, putting the value in the Median formula, we get;

$$525 = 500 + \frac{50 - (36 + x)}{20} \times 100$$

so x = 9
y = 24 - x (from eq.i)
y = 24 - 9 = 15

Therefore, the value of x = 9

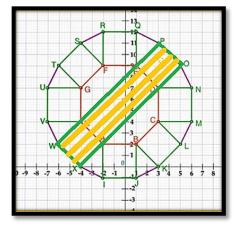
and y = 15.

(i)

36

B(1,2), F(-2,9)
BF² = (-2-1)²+ (9-2)²
= (-3)²+ (7)²
= 9 + 49
= 58
So, BF =
$$\sqrt{58}$$
 units

(ii)



W(-6,2), X(-4,0), O(5,9), P(3,11) Clearly WXOP is a rectangle Point of intersection of diagonals of a rectangle is the mid point of the diagonals. So the required point is mid point of WO or XP $(-6+5)^{2+9}$

$$=\left(\frac{-6+5}{2}, \frac{2+9}{2}\right)$$

= $\left(\frac{-1}{2}, \frac{11}{2}\right)$ ^{1/2}

(iii) A(-2,2), G(-4,7) Let the point on y-axis be Z(0,y) $AZ^2 = GZ^2$ 1⁄2

1/2

1/2

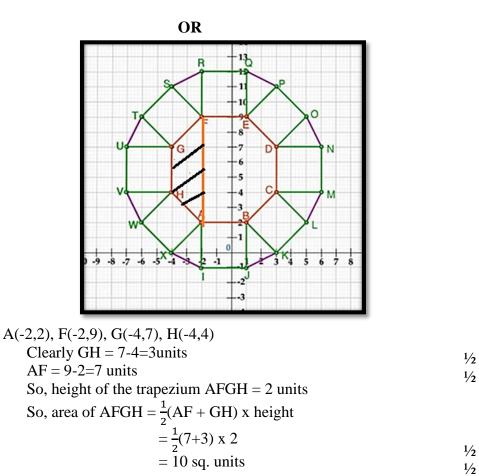
1/2 1/2

1

$$(0+2)^2 + (y-2)^2 = (0+4)^2 + (y-7)^2$$

 $(2)^2 + y^2 + 4 - 4y = (4)^2 + y^2 + 49 - 14y$
 $8-4y = 65-14y$
 $10y = 57$
So, $y = 5.7$
i.e. the required point is (0, 5.7)

1⁄2 1⁄2



37.	(i) Since each row is increasing by 10 seats, so it is an AP with first term $a = 30$,	
	and common difference d=10.	1⁄2
	So number of seats in 10^{th} row = a_{10} = a+ 9d	
	$= 30 + 9 \times 10 = 120$	1⁄2
	(ii) $S_n = \frac{n}{2}(2a + (n-1)d)$	
	$1500 = \frac{n}{2}(2 \times 30 + (n-1)10)$	1⁄2
	$3000 = 50n + 10n^2$	
	$n^2 + 5n - 300 = 0$	1/2
	$n^2 + 20n - 15n - 300 = 0$, 2
	(n+20) $(n-15) = 0$	1/2
	Rejecting the negative value, $n=15$	1/2

OR

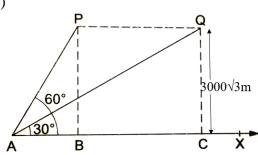
No. of seats already put up to the 10th row = S₁₀ $S_{10} = \frac{10}{2} \{2 \times 30 + (10-1)10\}$ ^{1/2} ^{1/2}

$$= 5(60 + 90) = 750$$
So, the number of seats still required to be put are $1500 - 750 = 750$
^{1/2}

(iii) If no. of rows =17
then the middle row is the 9th row
$$\frac{1}{2}$$

 $a_8 = a + 8d$
 $= 30 + 80$
 $= 110$ seats $\frac{1}{2}$

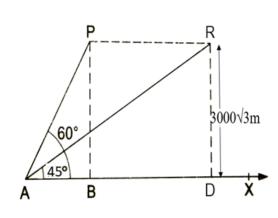
38 (i)



P and Q are the two positions of the plane flying at a height of $3000\sqrt{3}$ m. A is the point of observation.

(ii) In \triangle PAB, tan60° =PB/AB Or $\sqrt{3} = 3000\sqrt{3}$ / AB So AB=3000m tan30° = QC/AC $1/\sqrt{3} = 3000\sqrt{3}$ / AC AC = 9000m distance covered = 9000- 3000 = 6000 m.

OR



In \triangle PAB, tan60° =PB/AB Or $\sqrt{3} = 3000\sqrt{3}$ / AB So AB=3000m tan45° = RD/AD 1= 3000 $\sqrt{3}$ / AD 1⁄2

1

1

1⁄2

 $\frac{1}{2}$

1⁄2

AD = $3000\sqrt{3}$ m distance covered = $3000\sqrt{3} - 3000$ = $3000(\sqrt{3} - 1)$ m.	1/2
(iii) speed = $6000/30$	1/2
= 200 m/s = 200 x 3600/1000	1/2
= 720 km/hr	, 2
Alternatively: speed = $\frac{3000(\sqrt{3}-1)}{15(\sqrt{3}-1)}$	17
= 200 m/s	1/2
= 200 x 3600/1000	1/2
= 720km/hr	