Class - X

Mathematics-Basic (241)

Marking Scheme-SQP 2019-20

Max. Marks: 80

Duration: 3 hrs.

1.	(b) 42	(1)
2.	(a)2 Mean = 3 Median - Mode	(1)
3.	(d)70°	(1)
4.	(b) 5 ² ×13	(1)
5.	$(a)\frac{1}{26}$	(1)
	(3) ₂₆	
6.	(d) 4	(1)
7.	(c) 5.010010001	(1)
8.	(c) 3	(1)
9.	(b) 5 units	(1)
10.	(b) (- 3, 5)	(1)
10.		(')
11.	(2, 3)	(1)
12.	2 OR 1	(1)
13.	1	(1)
14.	0	(1)
15.	4:9	(1)
10.		(')
16.	Sin P = $1/\sqrt{2}$	(1)

Buy the latest MTG CBSE books best prices at - https://bit.ly/3QNnoOI

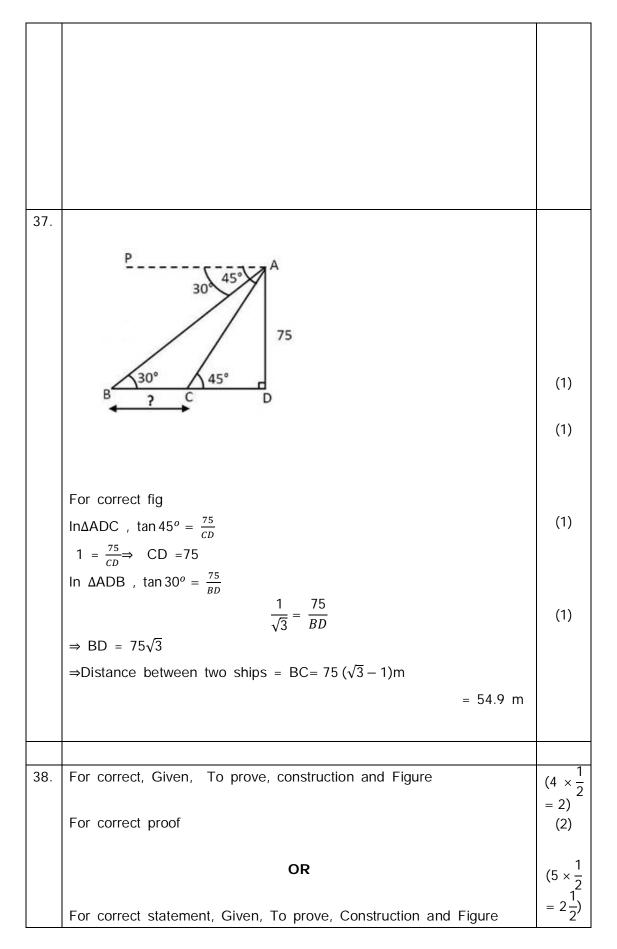
	OR	
	cosec A = 17/15	
17.	Area of quadrant = $\frac{1}{4} \times \frac{22}{7} \times r^2$ = 38.5 (use $\pi = \frac{22}{7}$)	$\left(\frac{1}{2}\right)$
	\Rightarrow r = 7cm	
	∴ diameter = 14 cm	$(\frac{1}{2})$
	1	
18.	$\frac{1}{2}$	1
19.	$\frac{AD}{BD} = \frac{AE}{EC} $ (By B.P.T.)	$(\frac{1}{2})$
		2'
	$\frac{1.5}{3} = \frac{1}{EC}$	1
	$\therefore EC = 2 cm$	$(\frac{1}{2})$
20.	$A_5 = a_1 + 4d = 0$	$(\frac{1}{2})$
	$1^2 + 4d = 0$	
	d = - 3	$(\frac{1}{2})$
	SECTION - B	
21.	P (Two Head) = $\frac{1}{4}$	(1)
	4 4	(1)
22.	Good bulbs = 25 - 5 = 20	(1)
	P (good bulb) $=\frac{20}{25}=\frac{4}{5}$	(1)
	OR	
	Of all those outcomes, the ones for which $a + b = 8$ are:	(1)
	2+6, 3+5, 4+4, 5+3, 6+2 or 5 outcomes.	
	P = 5/36	
		(1)

23. A L B			
	(1)		
$\angle OLA = 90^{\circ}$			
$\angle OMD = 90^{\circ}$ $\angle OLA = \angle OMD$			
Which are alternate angles, hence AB CD			
	(1)		
24. LHS = tan 48° tan 23°tan 42°tan 67°	(1)		
=Cot (90°-48°) cot (90°-23°) tan 42° tan 67°			
=Cot 42° cot 67° tan 42° tan 67°	(1)		
=1			
OR			
=Cos 48°cos 42° - Sin 48° Sin 42°	(1)		
=Sin (90° - 48°) sin (90°-42°) - Sin 48° Sin 42°			
=Sin 42° Sin 48° - Sin 48° Sin 42° = 0	(1)		
25. $r = \frac{7}{2}$	(1)		
Area of Circle= $\frac{\pi r^2}{4} = \frac{77}{2} \text{cm}^2$			
	(1)		
26. (i) 3 Students			
(ii) $\frac{x^2 + 2x + 1}{x^2 + 2x + 1}$	(1)		
(ii) $\frac{x + 2x + 1}{x + 1}$			
	(1)		
$= \frac{(x+1)^2}{x+1} = x+1$			
SECTION - C			
SECTION - C			

	-	1			
27.	$x^2 - 3x - 10 = 0$	(3)			
	$x^2-5x+2x-10 = 0$				
	x(x-5) + 2(x-5)=0				
	(x-5) $(x+2)=0$				
	X = 5, -2				
	Sum of the roots = $\frac{-b}{a} = \frac{3}{1}$				
	which is same as 5 - 2 = 3				
	product of the roots = $\frac{c}{a}$ -10				
	which is same as $5x(-2) = -10$				
	Hence verified				
28.	Correct construction of given circle	(1)			
	Correct construction of two tangents	(2)			
	OR	(1)			
	Line of given length				
	Correct position of point which divides the line segment in the given				
	ratio				
29.	Area of track = $120 \times 70 + \Box (35)^2 - [120 \times 56 + \Box (28)^2]$	(1)			
	$= 120 \times 14 + \frac{22}{7} [(35)^2 - (28)^2]$				
	$= 1680 + \frac{22}{7} \times 7 \times 63$				
	= 1680 + 1386	$\left(1\frac{1}{2}\right)$			
	$= 3066 \text{m}^2$	$\left(\frac{1}{2}\right)$			
		$(\frac{1}{2})$			
	Yes, Meena is wrong.	(2)			
30.	L.H.S. = $\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$	(1)			
	$= \frac{\cos A \left(\frac{1}{\sin A} - 1\right)}{\cos A \left(\frac{1}{\sin A} + 1\right)} = \frac{\left(\frac{1}{\sin A} - 1\right)}{\frac{1}{\sin A} + 1}$				
		(1)			
	$= \frac{\operatorname{cosec} A - 1}{\operatorname{cosec} A + 1} = R.H.S$	(1)			

	OR	
	L.H.S. = $\frac{\tan A + \sin A}{\tan A - \sin A}$	(1)
	$=\frac{\frac{Sin A}{\cos A}+Sin A}{\frac{Sin A}{\cos A}-\cos A}=\frac{Sin A}{Sin A}\frac{[Sec A+1]}{[Sec A-1]}$	
	= R.H.S	(1)
		(1)
31.	Let us assume that 5 - $\sqrt{3}$ is a rational We can find co prime a & b (b≠ 0)such that 5 - $\sqrt{3} = \frac{a}{b}$	$(\frac{1}{2})$
	Therefore 5 - $\frac{a}{b} = \sqrt{3}$ So we get $\frac{5b-a}{b} = \sqrt{3}$ Since a & b are integers, we get $\frac{5b-a}{b}$ is rational, and so $\sqrt{3}$ is rational. But $\sqrt{3}$ is an irrational number	(1) $(\frac{1}{2})$
	Which contradicts our statement $\therefore 5 - \sqrt{3}$ is irrational OR	(1)
	$616 = 32 \times 19 + 8$ $\Rightarrow r = 8 \neq 0$ $32 = 8 \times 4 + 0$ $\Rightarrow r = 0$	(2)
	The HCF of 32 and 616 is 8.	(1)
32.		(1)

Buy the latest MTG CBSE books best prices at - https://bit.ly/3QNnoOl


	A		
	P	(1)	
	B	(1)	
	In $\triangle OPA$ and $\triangle OPB$		
	$\angle PAO = \angle PBO (each 90^{\circ})$ OP = OP(common)		
	$OA = OB(radii \ of \ same \ circle)$		
	$\Delta OPA \cong \Delta OPB (by RHS congruency axiom)$ Hence PA = PB (CPCT)		
33.	(i) (6,4)	(1)	
	(ii) $\sqrt{(6-3)^2 + (1-4)^2} = 3\sqrt{2}$ units	(1)	
	(iii) Sita and Rita	(1)	
34.	2x + 3y = 11(1)	(1)	
	x-2y = -12(2)		
	(2) $\Rightarrow x = 2y - 12$ (3)		
	Substitute value of x from (3) in (1), we get		
	2(2y-12) + 3y = 11		
	$\Rightarrow 4y - 24 + 3y = 11$ $\Rightarrow 7y = 35$		
	$\Rightarrow y = 5$		
	Substituting value of $y = 5$ in equation (3), we get	(1)	
	x = 2(5) - 12 = 10 - 12 = -2		
	Hence $x = -2$, $y=5$ is the required solution		
	Now $5 = -2m + 3$		
	$\Rightarrow 2m = 3-5$ $\Rightarrow 2m = -2$		
	$\Rightarrow 2 m = -2$ m = -1		
		(1)	
35.	SECTION - D Let two consecutive positive integers be x and $x + 1$	$(\frac{1}{2})$	
		`2'	

$$\begin{array}{c|c} & \therefore x^{2} + (x + 1)^{2} = 365 & (1\frac{1}{x^{2}}) \\ \Rightarrow x^{2} + x - 182 = 0 & (1) \\ & (x + 14)(x - 13) = 0 \\ & \therefore x = 13 & (1) \\ \end{array}$$
Hence two consecutive positive integers are 13 and 14 & (1)

36. Let common difference be d
$$\begin{array}{c} \Rightarrow \frac{14}{2} [2(10) + (n - 1)d] = 1050 \\ \Rightarrow d = 10 \\ = 10 + 19 & (10) = 200 & (2) \\ \hline & 0R & \\ & \frac{a = 5}{a_{n} = 45} \\ & s_{n} = 400 & \\ \hline & \frac{a = 5}{a_{n} = 45} \\ & s_{n} = 400 & \\ \hline & \frac{a = 5}{5} \\ & s_{n} = 400 & \\ \hline & \frac{a = 5}{5} \\ & s_{n} = 400 & \\ \hline & \frac{a = 5}{5} \\ & s_{1} = 400 & \\ \hline & 16 & (2) & \\ a \log a_{n} = 45 & \\ & 5 + 15d = 45 & \\ & 15d = 40 & \\ & d = 8/3 & (2) & \\ \end{array}$$

Т

7

Buy the latest MTG CBSE books best prices at - https://bit.ly/3QNnoOl

Buy the latest MTG CBSE books best prices at - https://bit.ly/3QNnoOI

	For correct proof			$(1\frac{1}{2})$	
39.	A.T. Q.				
	$\pi r^2 \times 1800 = \pi \times \frac{1}{2} \times \frac{1}{2} \times 8$				
	$\Rightarrow r^2 = \frac{1}{900}$				
	$\Rightarrow r = \frac{1}{30}$ $\therefore \text{ Thickness of wire} = \frac{1}{2} cm$				
	$\therefore \text{ Thickness of wire} = \frac{1}{15}cm$				
	OR				
	$4 - n^3 - n^2 h$				
	$\frac{4}{3}\pi r^3 = \pi R^2 h$ $\frac{4}{3}(4.2)^3 = (6)^2 h$				
	$\overline{3} (4.2)^3 = (6)^2 h$ $\Rightarrow h = \frac{2744}{100}$				
	$\rightarrow n - 100$				
	$\therefore h = 2 \cdot 744 \ cm$				
40.					
	Daily Income	Number of workers	Cumulative Frequency		
	400-420	12	12		
	420-440	14	26		
	420-440	14	20		
	440-460	8	34		

	460-480	6	40		
	480-500	10	50		
					(2)
Correct Table					
Drawing an ogive with co-ordinates				(2)	
(420,1	2), (440,26), (460, 34), (4	80,40), (500, 50)			

Buy the latest MTG CBSE books best prices at - https://bit.ly/3QNnoOl