Class X Mathematics (Standard) SQP Marking Scheme (2019-20)

Section-A					
1	(c) 3 decimal places	1			
2	(a) 165	1			
3	(c) 20	1			
4	(a) all real values except 10	1			
5	(d) not defined	1			
6	(a) $\sqrt{2} - 1$	1			
7	(d) 30°	1			
8	(d) IV quadrant	1			
9	(c) 4	1			
10	(a) -12	1			
11	$\pi r l + 2\pi r h + \pi r^2$	1			
12	4	1			
	OR 1				
	5	I			
13	49 : 81	1			
14	14, 38	$\frac{1}{2} + \frac{1}{2}$			
15	$\frac{3}{11}$	1			
16	Rational number= 0.30	$\frac{1}{2}$			
	Irrational number = 0.3010203040	$\frac{1}{2}$			
	Or any other correct rational and irrational number				
17	ΔACB~ΔADC (AA criterion)	$\frac{1}{2}$			

	$\Rightarrow \frac{AC}{AD} = \frac{AB}{AC}$	1		
	AD AC	2		
	∴ AB = 12 cm			
18	B B B B B B B B B B B B B B B B B B B			
	$\ln \Delta OBP, \frac{OB}{OP} = \sin 30^{\circ}$	$\frac{1}{2}$ $\frac{1}{2}$		
	$\therefore OP = 2r$	$\frac{1}{2}$		
	OR			
	Length of Tangent = $2 \times \sqrt{5^2 - 4^2} = 2 \times 3 cm = 6 cm$	$\frac{1}{2} + \frac{1}{2}$		
19	$b, c \text{ and } 2b \text{ are in } A.P \Rightarrow c = \frac{3b}{2}$	$\frac{1}{2}$		
	$\therefore b: c = 2:3$	$\frac{1}{2}$		
20	$D = (2\sqrt{2}k)^2 - 4(1)(18) = 0 \Rightarrow k = \pm 3$	$\frac{\frac{1}{2}}{\frac{1}{2}+\frac{1}{2}}$		
		22		
	Section-B			
21	110, 120, 130, , 990			
	$a_n = 990 \Rightarrow 110 + (n - 1) \times 10 = 990$	1		
22	$\frac{\therefore n = 89}{D \qquad R \qquad C}$	1		
22	AP = AS, BP = BQ, CR = CQ and DR = DS			
	S \Rightarrow AP + BP + CR + DR = AS + BQ + CQ + DS Q \Rightarrow AB + CD = AD + CB	1		
	$O \Rightarrow AB + CD = AD + CB$ But AB = CD and AD = CB	1		
	$A \qquad P \qquad B \qquad \therefore AB = AD$			
	Hence, ABCD is a square.			
23	$\Delta ADE \sim \Delta GBD$ and $\Delta ADE \sim \Delta FEC$			
	$\Rightarrow \Delta GBD \sim \Delta FEC$ (AA Criterion)			
	$\Rightarrow \frac{GD}{FC} = \frac{GB}{FE} \Rightarrow GD \times FE = GB \times FC \text{ or } FG^2 = BG \times FC$			
	OR			

24	A B D C $AD \perp BC \therefore \ln \Delta ABD, AB^{2} = AD^{2} + BD^{2}$ $\Rightarrow AB^{2} = AD^{2} + \frac{BC^{2}}{4} \text{ or } 4AB^{2} = 4AD^{2} + BC^{2}$ $\Rightarrow 3AB^{2} = 4AD^{2}$ (i) $\cos(90^{\circ} - \theta) = \cos(3\theta - 30^{\circ})$	$\frac{1}{2}$ 1 $\frac{1}{2}$
24	(i) $\cos(90^\circ - \theta) = \cos(3\theta - 30^\circ)$ $\Rightarrow 90^\circ - \theta = 3\theta - 30^\circ \Rightarrow \theta = 30^\circ$	1
	(ii) $\frac{AB}{AC} = \sin 30^{\circ}$ \therefore Length of rope = $AC = 400 m$	1
25	For Jayanti,	
	Favourable outcome is (6,6) i.e, 1	1
	Probability(getting the number 36) = $\frac{1}{36}$	1
	For Pihu,	1
	Favourable outcome is 6 i.e, 1	
	Probability(getting the number 36) = $\frac{1}{6}$	1
	∴ Pihu has the better chance.	1
	OR	
	Total number of integers = 29	
	(i) Prob.(prime number) = $\frac{6}{29}$	
	(ii) Prob.(number divisible by 7) = $\frac{4}{29}$	

26	Capacity of first glass = $\pi r^2 H - \frac{2}{3}\pi r^3$ = $\pi \times 9(10-2) = 72\pi cm^3$	1				
	Capacity of second glass = $\pi r^2 H - \frac{1}{3}\pi r^2 h$ = $\pi \times 3 \times 3(10 - 0.5) = 85.5\pi cm^3$ \therefore Sureshgot more quantity of juice.	1				
	Section - C					
27	Let us assume, to the contrary, that $2\sqrt{5} - 3$ is a rational number $\therefore 2\sqrt{5} - 3 = \frac{p}{q}$, where p and q are integers and $q \neq 0$	1				
	$\Rightarrow \sqrt{5} = \frac{p+3q}{2q}(1)$ Since p and q are integers $\therefore \frac{p+3q}{2q}$ is a rational number					
	$\therefore \sqrt{5}$ is a rational number which is a contradiction as $\sqrt{5}$ is an irrational number Hence our assumption is wrong and hence $2\sqrt{5} - 3$ is an irrational					
	number.					
	OR	2				
	$180 = 144 \times 1 + 36$ $144 = 36 \times 4 + 0$ $\therefore \text{ HCF}(180, 144) = 36$	1				
	36 = 13m - 16 Solving, we get $m = 4$					
28	$S_m = S_n \Rightarrow \frac{m}{2} [2a + (m-1)d] = \frac{n}{2} [2a + (n-1)d]$ $\Rightarrow 2a(m-n) + d(m^2 - m - n^2 + n) = 0$ $\Rightarrow (m-n)[2a + (m+n-1)d] = 0 \text{ or } S_{m+n} = 0$	1 1 1				
29	x + y = 7 and $2(x - y) + x + y + 5 + 5 = 27$	$\frac{1}{2} + 1$				
	$\therefore x + y = 7 \text{ and } 3x - y = 17$	2				
	Solving, we get, $x = 6$ and $y = 1$	1				

4

	OR	
	Let $\frac{1}{x} = a$ and $\frac{1}{y} = b$	
	$\Rightarrow 21a + 47 b = 110 \text{ and } 47a + 21b = 162$	1
	Adding and subtracting the two equations, we get $a + b = 4$ and $a - b = 2$	1
	Solving the above two equations, we get $a = 3$ and $b = 1$	1
30	$\therefore x = \frac{1}{3} \text{ and } y = 1$ $p(x) = x^4 + 4x^3 - 2x^2 - 20x - 15$	
50	$p(x) = x^{2} + 4x^{2} = 2x^{2} - 20x - 13$ $x^{2} - 5 \text{ is factor of } p(x)$ $\therefore p(x) = (x^{2} - 5)(x^{2} + 4x + 3)$	2
	Or $p(x) = (x^2 - 5)(x + 3)(x + 1)$ So, all the zeroes of $p(x)$ are $\sqrt{5}, -\sqrt{5}, -3$ and -1	1
31	(i) A(1,7), B(4,2) C(-4,4) Distance travelled by Seema = $\sqrt{34}$ units Distance travelled by Aditya = $\sqrt{68}$ units	1
	∴ Aditya travels more distance	
	(ii) Coordinates of D are $\left(\frac{1+4}{2}, \frac{7+2}{2}\right) = \left(\frac{5}{2}, \frac{9}{2}\right)$	1
	(iii) $ar(\Delta ABC) = \frac{1}{2}[1(2-4) + 4(4-7) - 4(7-2)]$	
	= 17 sq. units	1
32	$\sin\theta + \cos\theta = \sqrt{3} \Rightarrow (\sin\theta + \cos\theta)^2 = 3$ $\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \Rightarrow \sin\theta\cos\theta = 1$	1 1
	$\therefore \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 1$	1

	OR	
	$\frac{\cos^{2}(45^{\circ}+\theta)+\cos^{2}(45^{\circ}-\theta)}{\tan(60^{\circ}+\theta)\times\tan(30^{\circ}-\theta)} + (\cot 30^{\circ}+\sin 90^{\circ}) \times (\tan 60^{\circ}-\sec 0^{\circ})$	
	$= \frac{\cos^2(45^\circ+\theta) + \sin^2(45^\circ+\theta)}{\tan(60^\circ+\theta) \times \cot(60^\circ+\theta)} + (\sqrt{3}+1) \times (\sqrt{3}-1)$	2
	= 1 + 2 = 3	1
33	Required Area = Area of triangle - Area of 3 sectors	1
	Area of Triangle = $\frac{1}{2} \times 24 \times 7 = 84 m^2$	1
	Area of three sectors = $\frac{\pi r^2}{360^\circ}$ × (sum of three angles of triangle)	
	$=\frac{\frac{360}{22\times7\times7\times180^{\circ}}}{7\times2\times2\times360^{\circ}}=\frac{77}{4} \text{ or } 19.25 m^2$	1
	$=\frac{1}{7\times2\times2\times360^{\circ}}=\frac{1}{4}01$ 19.25 m	1
	$\therefore \text{ Required Area} = \frac{259}{4} \text{ or } 64.75 m^2$	
34	(i) Curve 1 - Less than ogive, Curve2 - More than ogive	1
	(ii) Median Rainfall = 21 cm	1
	(iii) 3 Median = Mode + 2 mean	1
	∴ Mode = 16.2 cm	
	<u>Section-D</u>	
35	Correct construction of given triangle	1
	Correct construction of similar Δ with scale factor $\frac{3}{4}$	3
	OR	
	Correct construction of given circle	1
	Correct construction of two tangents	3
36	For correct given, to prove, const. and figure	$(4 \times \frac{1}{2})$
		= 2) 2
		2
	For correct proof	
37	Let the original speed of the train be $x \text{ km/h}$	2
	$\therefore \frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$ $\Rightarrow x^2 + 5x - 2250 = 0$	1
	$\Rightarrow x^2 + 5x - 2250 = 0$	-

	$\Rightarrow (x + 50)(x - 45) = 0 \therefore x = 45$ Hence original speed of the train = 45km/h	1
	OR	
	$\frac{1}{x} - \frac{1}{x-2} = 3$	1
	$\frac{x-2-x}{x(x-2)} = \frac{3}{1}$	1
	$3x^2 - 6x = -2$	
	$3x^2 - 6x + 2 = 0$	1
	$\chi = \frac{6 \pm \sqrt{12}}{6}$	1
	$=\frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3}$	
38	Capacity of tank = $\frac{1}{3}\pi \times 20 \times (10^2 + 25^2 + 10 \times 25)m^3$ = $\pi \times 20 \times 325m^3 = \pi \times 20 \times 325l$	$1\frac{1}{2}$
	Cost of petrol = π × 20 × 325 × 70 = ₹1430000	$\frac{1}{2}$
	Slant height = $\sqrt{20^2 + (25 - 10)^2} = 25m$	1
	Surface area of tank = $\pi \times 25(10 + 25)m^2 = 2750m^2$	1
	OR	
	Quantity of water flowing through pipe in 1 hour	2
	$= \pi \times \frac{7}{100} \times \frac{7}{100} \times 15000m^{3}$ Required time = $\left(50 \times 44 \times \frac{21}{100}\right) \div \left(\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000\right)$ = 2 hours	2

39						
	Correct figure					
	In ΔABE , $\frac{BE}{AB} = ta$	an 60°				1
	$\Rightarrow AB = 300$					
		$\frac{\partial c}{\partial c} = \tan 30^{\circ}$				1
	$\Rightarrow AC = 900$					$\frac{1}{2}$
	BC = AC - AB = 6000m					
	$\therefore \text{ Speed of aeroplane} = \frac{6000}{30} m/s = 200m/s$					
40	Daily	Number of	x _i	u _i	$f_i u_i$	
	Wages(in	Workers(f_i)				
	Rs.)					
	100-120	10	110	-3	-30	
	120-140	15	130	-2	-30	
	140-160	20	150	-1	-20	
	160-180	22	170	0	0	
	180-200	18	190	1	18	
	200-220	12	210	2 3	24	2
	220-240	13 110	230	3	<u>39</u> 1	1
	Total 110 1					
	Mean daily wages = $170 + \frac{1}{110} \times 20 = ₹170.19$ (approx.) Mode = $160 + \frac{22-20}{44-20-18} \times 20 = ₹166.67$ (approx.)					1