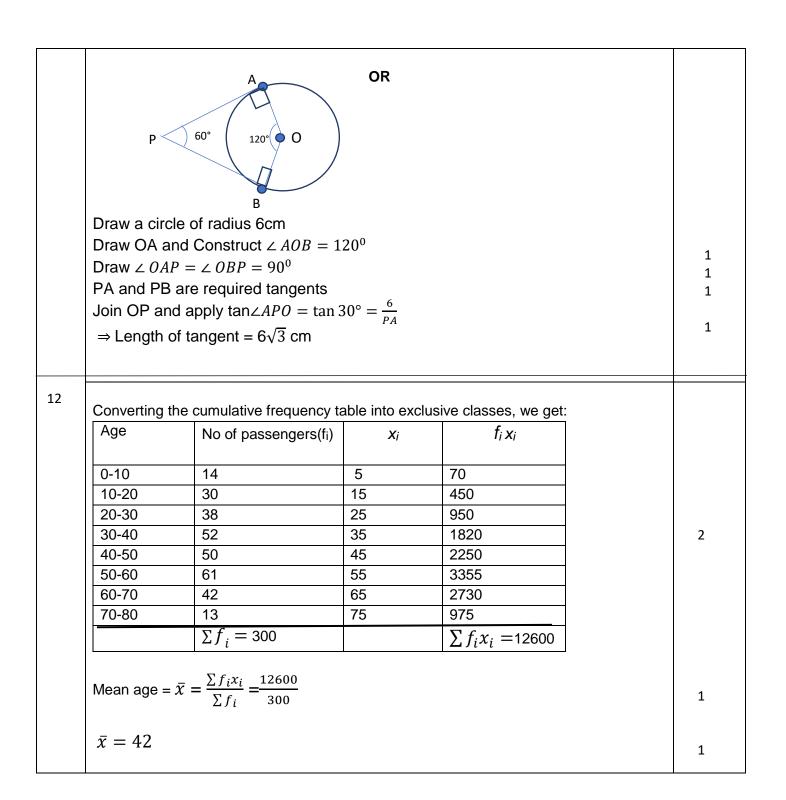
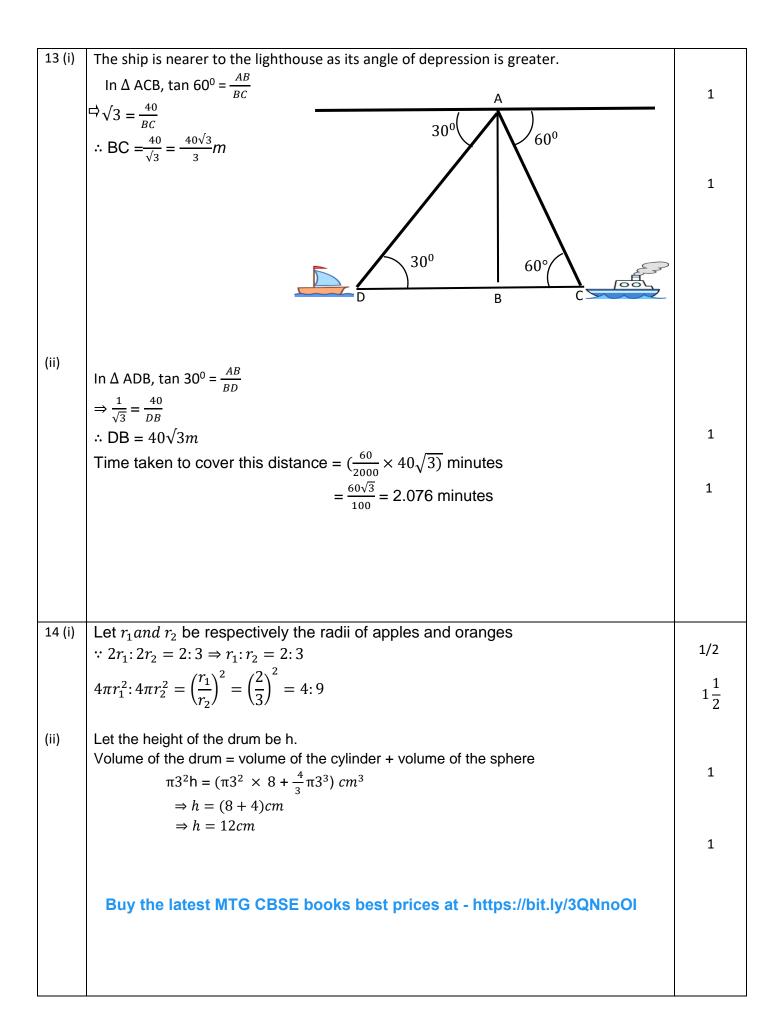

Marking Scheme Mathematics –Basic(241) Class- X Session- 2021-22 TERM II


Q.N.	HINTS/SOLUTION		Marks			
1	$3x^2 - 7x - 6 = 0$					
	$\Rightarrow 3x^2 - 9x + 2x - 6$		1/2			
	$\Rightarrow 3x(x-3) + 2(x-3)$					
	$\Rightarrow (x-3)(3x+2) =$	0			1/2	
	$\therefore x = 3, -\frac{2}{3}$				1	
	3		OR		1	
	Since the roots are i					
	$\Rightarrow k^2 - 4 \times 3 \times 3 = 0 (\because$				_	
	· ·	$u = 3, v = \kappa, c$	= 3)		1	
	$\Rightarrow k^2 = 36$		1/2 +1/2			
2	\Rightarrow k = 6 or -6	ha auba and I - [O I I ha tha dimanaiana a	of the equipoid		
2			B, H be the dimensions of	or the cubola	1/2	
	Since $l^3 = 64 \ cm^3 :: l$				1/2	
			(3H + HL), Where L=12, B=	=4 and H=4	1/2	
	$=2(12 \times 4 + 4 \times 4 +$	$4 \times 12) \ cm^2 = 2$	24 <i>c</i> m ²		1	
3	Runs scored	Frequency	Cumulative Frequency			
	0-20	4	4			
	20-40	6	10			
	40-60	5	15	_		
	60-80	3	18	_	1/2	
	80-100	4	22		,	
	Total frequence	cv (N) = 22				
	A7				4 /2	
	$\frac{N}{2}$ = 11; So 40-60 is the		1/2			
	(N)					
	Median = $l + \frac{\left(\frac{N}{2}\right) - cf}{f} \times$	h			1/2	
	$=40 + \frac{11-10}{5} \times 2$,	
	5	20				
	= 44 runs				1/2	
4	The common difference	ce is 9 - 4=5			1	
	If the first term is 6 and common difference is 5, then new AP is,					
	6, 6+5, 6+10					
	=6,11,16		1			
5	∵ Mode = 38.					
	∴ The modal class is 30-40.				1/2	
	$f_1 = f_0$					
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times$	h			1/2	


$=30 + \frac{16-12}{32-12-x} \times 10 = 38$	1/2			
$\frac{4}{20-x} \times 10 = 8$				
8(20-x) = 40				
20-x= 5 X= 15	1/2			
6 X D Y				
0				
M E N				
∴ XY is the tangent to the circle at the point D $∴ OD \bot XY \Rightarrow \angle ODX = 90^{0} \Rightarrow \angle EDX = 90^{0}$	1/2			
Also, MN is the tangent to the circle at E				
$\therefore OE \perp MN \Rightarrow \angle OEN = 90^{\circ} \Rightarrow \angle DEN = 90^{\circ}$	1/2			
⇒ \angle EDX = \angle DEN (each 90°). which are alternate interior angles.	1			
∴ XY MN OR	_			
OK .				
∴ Tangent segments drawn from an external point to a circle are equal ∴ BP=BQ CR=CQ DR=DS				
AP=AS A P B				
⇒BP+CR+DR+AP = BQ+CQ+DS+AS	1			
⇒ AB+DC = BC+AD				
∴ AD= 10-7= 3 cm	1			
Section-B				

9	PA = PB (Tangent segments drawn to a circle from an external point are equal)			
	∴ In $\triangle APB$, \angle PAB = \angle PBA			
	Also, \angle APB = 60° In $\triangle APB$, sum of three angles is 180° .			
	Therefore, \angle PAB + \angle PBA = 180° - \angle APB= 180° – 60° = 120°.			
	$\therefore \angle PAB = \angle PBA = 60^{\circ} (\because \angle PAB = \angle PBA)$	1		
	\therefore $\triangle APB$ is an equilateral triangle.			
	So, $AB = 6cm$	1		
10	Let the three consecutive multiples of 5 be 5x, 5x+5, 5x+10.			
	Their squares are $(5x)^2$, $(5x + 5)^2$ and $(5x + 10)^2$.			
	$(5x)^2 + (5x+5)^2 + (5x+10)^2 = 725$	1		
	$\Rightarrow 25x^2 + 25x^2 + 50x + 25 + 25x^2 + 100x + 100 = 725$			
	$\Rightarrow 75x^2 + 150x - 600 = 0$			
	$\Rightarrow x^2 + 2x - 8 = 0$			
	$\Rightarrow (x+4)(x-2) = 0$			
	$\Rightarrow x = -4, 2$	1		
	$\Rightarrow x = 2$ (ignoring –ve value)			
	So the numbers are 10, 15 and 20	1		
	Section-C			

