Marking Scheme

Mathematics Class X (2017-18)

Section A

S.No.	Answer	Marks
1.	Non terminating repeating decimal expansion.	[1]
2.	$k = \pm 4$	[1]
3.	$a_{11} = -25$	[1]
4.	(0, 5)	[1]
5.	9:49	[1]
6.	25	[1]

Section B

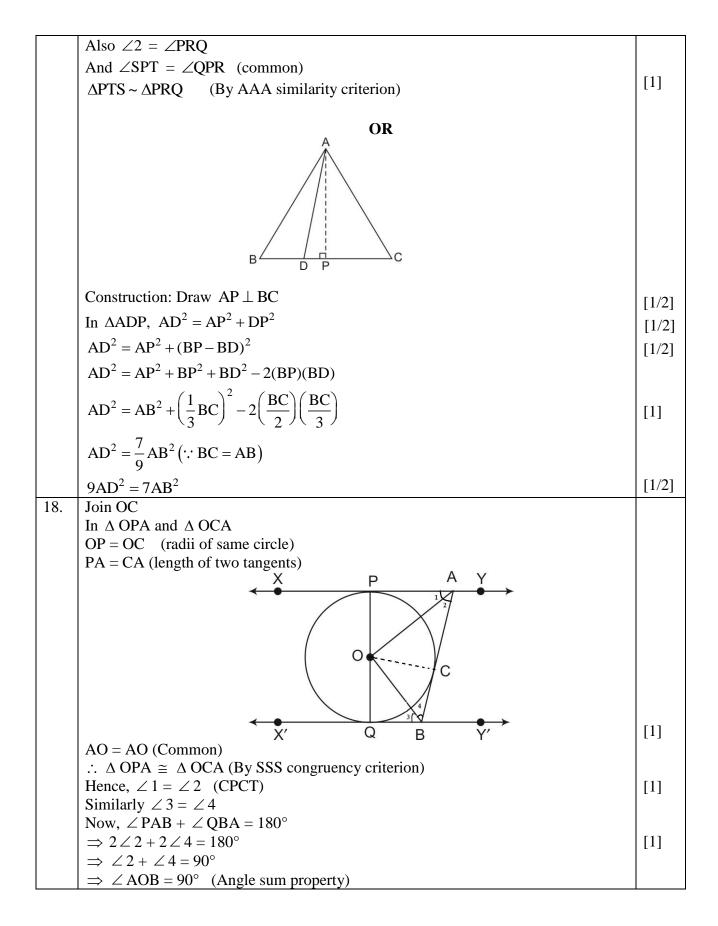
7.	$LCM(p,q) = a^3b^3$	[1/2]
	$HCF(p,q) = a^{2}b$	[1/2]
	LCM (p, q) × HCF (p, q) = $a^{5}b^{4} = (a^{2}b^{3})(a^{3}b) = pq$ S _n = 2n ² + 3n	[1]
8.		[1/2]
	$S_1 = 5 = a_1$	[1/2]
	$S_2 = a_1 + a_2 = 14 \implies a_2 = 9$	[1/2]
	$d = a_2 - a_1 = 4$	
	$a_{16} = a_1 + 15d = 5 + 15(4) = 65$ For pair of equations $kx + 1y = k^2$ and $1x + ky = 1$	[1/2]
9.	For pair of equations $kx + 1y = k^2$ and $1x + ky = 1$	
	We have: $\frac{a_1}{a_2} = \frac{k}{1}, \frac{b_1}{b_2} = \frac{1}{k}, \frac{c_1}{c_2} = \frac{k^2}{1}$	
	\mathbf{r}	
	For infinitely many solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	[1/2]
	$\therefore \frac{k}{1} = \frac{1}{k} \Longrightarrow k^2 = 1 \Longrightarrow k = 1, -1 \qquad \dots(i)$	[1/2]
	1 K	
	and $\frac{1}{k} = \frac{k^2}{1} \Longrightarrow k^3 = 1 \Longrightarrow k = 1$ (ii)	[1/2]
	From (i) and (ii), $k = 1$	[1/2]
10.	Since $\left(1, \frac{p}{3}\right)$ is the mid-point of the line segment joining the points (2, 0) and	
	0 + 2	
	$\left(0, \frac{2}{9}\right)$ therefore, $\frac{p}{3} = \frac{0 + \frac{2}{9}}{2} \Rightarrow p = \frac{1}{3}$	[1]
	The line $5x + 3y + 2 = 0$ passes through the point (-1, 1) as $5(-1) + 3(1) + 2 = 0$	[1]
11.		
	(i) P(square number) = $\frac{8}{113}$	[1]
	(ii) P(multiple of 7) = $\frac{16}{113}$	[1]

12.	Let number of red balls be $= x$	
	\therefore P(red ball) = $\frac{x}{12}$	
	If 6 more red balls are added:	[1/2]
	The number of red balls = $x + 6$	
	$P(\text{red ball}) = \frac{x+6}{18}$	
	Since, $\frac{x+6}{18} = 2\left(\frac{x}{12}\right) \Rightarrow x = 3$	[1]
	\therefore There are 3 red balls in the bag.	[1/2]

Section C

10		
13.	Let $n = 3k$, $3k + 1$ or $3k + 2$.	
	(i) When $n = 3k$:	
	n is divisible by 3.	
	$n + 2 = 3k + 2 \implies n + 2$ is not divisible by 3.	[1]
	$n + 4 = 3k + 4 = 3(k + 1) + 1 \implies n + 4$ is not divisible by 3.	
	(ii) When $n = 3k + 1$:	
	n is not divisible by 3.	
	$n + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1) \implies n + 2$ is divisible by 3.	[1]
	$n + 4 = (3k + 1) + 4 = 3k + 5 = 3(k + 1) + 2 \implies n + 4$ is not divisible by 3.	
	(iii) When $n = 3k + 2$:	
	n is not divisible by 3.	
	$n + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 \implies n + 2$ is not divisible by 3.	
	$n + 4 = (3k + 2) + 4 = 3k + 6 = 3(k + 2) \implies n + 4$ is divisible by 3.	[1]
	Hence exactly one of the numbers n, $n + 2$ or $n + 4$ is divisible by 3.	
14.	Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the two zeroes therefore, $\left(x - \sqrt{\frac{5}{3}}\right)\left(x + \sqrt{\frac{5}{3}}\right) = \frac{1}{3}(3x^2 - 5)$	[1]
	is a factor of given polynomial.	
	We divide the given polynomial by $3x^2 - 5$.	
	we divide the given polynomial by on 5.	
	$x^2 + 2x + 1$	
	$2^{2} = 5\sqrt{2^{4} + 6^{3} + 2^{2} + 10} = 5/2$	
	$3x^2 - 5 = 3x^4 + 6x^3 - 2x^2 - 10x - 5$	
	$/\pm 3x^4 \mp 5x^2$	
	$3x^{2}-5 \underbrace{) \frac{x^{2}+2x+1}{3x^{4}+6x^{3}-2x^{2}-10x-5}}_{\underline{+}3x^{4} \underline{-}5x^{2}} ($	[1]
	$+6x^3 = \pm 10x$	
	$\frac{\pm 6x^3 \qquad \mp 10x}{3x^2 - 5}$	
	$3x^2 - 5$	
	$\frac{\pm 3x^2 + 5}{0}$	
	0	
	For other zeroes, $x^2 + 2x + 1 = 0 \implies (\overline{x+1})^2 = 0, x = -1, -1$	
	\therefore Zeroes of the given polynomial are $\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, -1$ and -1 .	[1]

15. Let the ten's and the units digit be y and x respectively.So, the number is 10y + x.	
SO, the humber is $10y + x$.	[1/2]
The number when digits are reversed is $10x + y$.	[1/2]
Now, $7(10y + x) = 4(10x + y) \Rightarrow 2y = x$ (i)	[1]
Also $x - y = 3$ (i)	[1/2]
Solving (1) and (2), we get $y = 3$ and $x = 6$.	[-, -]
Hence the number is 36.	[1/2]
16. Let x-axis divides the line segment joining $(-4, -6)$ and $(-1, 7)$ at the point P in the	
ratio 1 : k.	[1/2]
Now, coordinates of point of division $P\left(\frac{-1-4k}{k+1}, \frac{7-6k}{k+1}\right)$	
7-6k	F11
Since P lies on x-axis, therefore $\frac{7-6k}{k+1} = 0$	[1]
$\Rightarrow 7 - 6k = 0$	
$\Rightarrow k = \frac{7}{6}$	
0	[1/2]
Hence the ratio is $1:\frac{7}{6}=6:7$	[1/2]
U C	[1]
Now, the coordinates of P are $\left(\frac{-34}{13}, 0\right)$.	
OR	
Let the height of parallelogram taking AB as base be h.	
Now AB = $\sqrt{(7-4)^2 + (2+2)^2} = \sqrt{3^2 + 4^2} = 5$ units.	[1]
Area (Δ ABC) = $\frac{1}{2} [4(2-9)+7(9+2)+0(-2-2)] = \frac{49}{2}$ sq units.	[1]
Now, $\frac{1}{2} \times AB \times h = \frac{49}{2}$	
$\Rightarrow \frac{1}{2} \times 5 \times h = \frac{49}{2}$	
$\rightarrow \frac{1}{2} \times 3 \times 11 - \frac{1}{2}$	
\Rightarrow h = $\frac{49}{5}$ = 9.8 units.	543
$\Rightarrow n = \frac{1}{5} = 9.8$ units.	[1]
17. \angle SQN = \angle TRM (CPCT as \triangle NSQ $\cong \triangle$ MTR)	[1]
P A	
S AT 2 T	
ĭ∕≫∖∖	
M = Q = R = N	
Since, $\angle P + \angle 1 + \angle 2 = \angle P + \angle PQR + \angle PRQ$ (Angle sum property)	
$\Rightarrow \angle 1 + \angle 2 = \angle PQR + \angle PRQ$	
$\Rightarrow 2 \angle 1 = 2 \angle PQR$ (as $\angle 1 = \angle 2$ and $\angle PQR = \angle PRQ$)	[1]
$\angle 1 = \angle PQR$	[-]

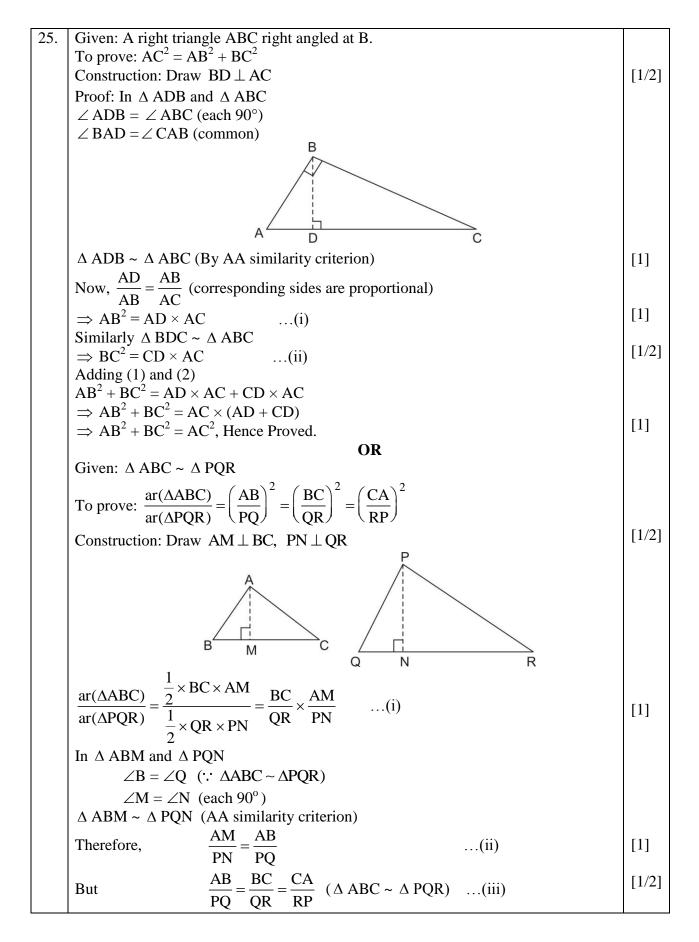


$$\begin{array}{rcl} 19. & \frac{\cos e^{2} 63^{\circ} + \tan^{2} 24^{\circ}}{\cos^{2} 66^{\circ} + \sec^{2} 27^{\circ}} + \frac{\sin^{2} 63^{\circ} + \cos 63^{\circ} \sin 27^{\circ} + \sin 27^{\circ} \sec 63^{\circ}}{2(\csc e^{2} 65^{\circ} - \tan^{2} 25^{\circ})} \\ &= \frac{\cos e^{2} 63^{\circ} + \tan^{2} 24^{\circ}}{\tan^{2} (9^{\circ} - 67^{\circ}) + \csc e^{2} (9^{\circ} - 27^{\circ})} + \frac{\sin^{2} 63^{\circ} + \cos 63^{\circ} \cos (90^{\circ} - 27^{\circ}) + \sin 27^{\circ} \csc (90^{\circ} - 65^{\circ})}{2(\csc e^{2} 65^{\circ} - \cot^{2} (90^{\circ} - 25^{\circ}))} \\ &= \frac{\cos e^{2} 63^{\circ} + \tan^{2} 24^{\circ}}{\tan^{2} 24^{\circ} + \csc e^{2} 63^{\circ}} + \frac{\sin^{2} 63^{\circ} + \cos 63^{\circ} + \sin 27^{\circ} \csc 27^{\circ}}{2(\csc e^{2} 65^{\circ} - \cot^{2} 65^{\circ})} \\ &= 1 + \frac{1+1}{2(1)} = 2 \\ & \text{OR} \\ \sin \theta + \cos \theta = \sqrt{2} \\ &\Rightarrow (\sin \theta + \cos \theta)^{2} = (\sqrt{2})^{2} \\ &\Rightarrow (\sin \theta + \cos \theta)^{2} = (\sqrt{2})^{2} \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ &\Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ & \dots(i) \\ \text{ we know, } \sin^{2} \theta + \cos^{2} \theta + 1 \\ & \dots(ii) \\ \text{Dividing (ii) by (i) we get} \\ & \frac{\sin^{2} \theta + \cos^{2} \theta}{\sin \theta \cos \theta} = \frac{1}{1/2} \\ &\Rightarrow \tan^{2} \theta + \cos^{2} \theta \\ &= \frac{1}{2} \\ &\Rightarrow BC = AC\sqrt{2} \quad (\because AB = AC) \\ &\Rightarrow BC = A\sqrt{2} \quad (\because AB = AC) \\ &\Rightarrow BC = r\sqrt{2} \\ \end{array}$$

21.	Let the area that can be irrigated in 30 minute be $A m^2$.	
	Water flowing in canal in 30 minutes = $\left(10,000 \times \frac{1}{2}\right)$ m = 5000 m	[1/2]
	Volume of water flowing out in 30 minutes = $(5000 \times 6 \times 1.5) \text{ m}^3 = 45000 \text{ m}^3 \dots (i)$	[1]
	Volume of water required to irrigate the field = $A \times \frac{8}{100} m^3$	[1/2]
	(ii) Equating (i) and (ii), we get	
	$A \times \frac{8}{100} = 45000$	[1]
	$A = 562500 \text{ m}^2.$ OR	
	$l = \sqrt{7^2 + 14^2} = 7\sqrt{5}$	[1/2]
		[1]
	Surface area of remaining solid = $6l^2 - \pi r^2 + \pi r l$, where r and l are the radius and slant height of the cone.	
	• <u>1</u> - <u>r</u>	
		[1]
	$= 6 \times 14 \times 14 - \frac{22}{7} \times 7 \times 7 + \frac{22}{7} \times 7 \times 7 \sqrt{5}$	
	$= 1176 - 154 + 154\sqrt{5}$	[1/2]
	$= (1022 + 154\sqrt{5}) \text{ cm}^2$	
22.	$Mode = \ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_0}\right) \times h$	[1]
	$(2f_1-f_0-f_2)$	
	$= 60 + \left(\frac{29-21}{58-21-12}\right) \times 20$	
	(50-21-1/)	[1]
	= 68	
	So, the mode marks is 68.	
	Empirical relationship between the three measures of central tendencies is:	
	3 Median = Mode + 2 Mean	[1]
	$3 \text{ Median} = 68 + 2 \times 53$	[1]
	Median = 58 marks	

Section D

23.	Let original speed of the train be x km/h.	
	Time taken at original speed = $\frac{360}{1000}$ hours	[1]
	$\frac{1}{X}$	
	Time taken at increased speed = $\frac{360}{x+5}$ hours	[1/2]
	Now, $\frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$	[1½]
	$\Rightarrow 360\left[\frac{1}{x}-\frac{1}{x+5}\right]=\frac{4}{5}$	
	$\Rightarrow x^2 + 5x - 2250 = 0$	
	\Rightarrow x = 45 or -50 (as speed cannot be negative)	[1]
	\Rightarrow x = 45 km/h	r-1
	OR	
	Discriminant = $b^2 - 4ac = 36 - 4 \times 5 \times (-2) = 76 > 0$	[1]
	So, the given equation has two distinct real roots	
	$5x^2 - 6x - 2 = 0$	
	Multiplying both sides by 5. $(5r)^2 - 2 \times (5r) \times 2 = 10$	
	$(5x)^2 - 2 \times (5x) \times 3 = 10$ $\Rightarrow (5x)^2 - 2 \times (5x) \times 3 + 3^2 = 10 + 3^2$	
	$\Rightarrow (5x)^2 = 19$	[1]
	$\Rightarrow 5x - 3 = \pm \sqrt{19}$	[*]
	$\Rightarrow x = \frac{3 \pm \sqrt{19}}{5}$	[1]
	Verification:	
	$5\left(\frac{3+\sqrt{19}}{5}\right)^2 - 6\left(\frac{3+\sqrt{19}}{5}\right) - 2 = \frac{9+6\sqrt{19}+19}{5} - \frac{18+6\sqrt{19}}{5} - \frac{10}{5} = 0$	[1/2]
	Similarly, $5\left(\frac{3-\sqrt{19}}{5}\right)^2 - 6\left(\frac{3-\sqrt{19}}{5}\right) - 2 = 0$	[1/2]
24.	Let the three middle most terms of the AP be $a - d$, a , $a + d$.	
	We have, $(a - d) + a + (a + d) = 225$	[1]
	\Rightarrow 3a = 225 \Rightarrow a = 75	[1/2]
	Now, the AP is	
	$a - 18d, \dots, a - 2d, a - d, a, a + d, a + 2d, \dots, a + 18d$	
	Sum of last three terms: (a + 184) + (a + 174) + (a + 164) = 420	r11
	(a + 18d) + (a + 17d) + (a + 16d) = 429 $\Rightarrow 2a + 51d - 420 \Rightarrow a + 17d - 142$	[1]
	$\Rightarrow 3a + 51d = 429 \Rightarrow a + 17d = 143$ $\Rightarrow 75 + 17d = 143$	
	$\Rightarrow 73 + 17d = 143$ $\Rightarrow d = 4$	[1/2]
	Now, first term = $a - 18d = 75 - 18(4) = 3$	
	:. The AP is 3, 7, 11,, 147.	[1]



	Hence, $\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \frac{BC}{QR} \times \frac{AM}{PN}$ from (i)	
	$= \frac{AB}{PQ} \times \frac{AB}{PQ} $ [from (ii) and (iii)]	
	$=\left(\frac{AB}{PQ}\right)^2$	[1/2]
	$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2 \text{ Using (iii)}$	[1/2]
26.	Draw \triangle ABC in which BC = 7 cm, \angle B = 45°, \angle A = 105° and hence \angle C = 30°. Construction of similar triangle A' BC' as shown below:	[1] [3]
	A A B B B C C C C C C C C C C C C C C C	
27.	LHS = $\frac{\cos \theta - \sin \theta + 1}{\cos \theta + \sin \theta - 1}$ = $\frac{\cos \theta - \sin \theta + 1}{\cos \theta + \sin \theta + 1} \times \frac{\cos \theta + \sin \theta + 1}{\cos \theta + \sin \theta + 1}$	[1]
	$= \frac{(\cos\theta + \sin\theta - 1)^{2} \cos\theta + \sin\theta + 1}{(\cos\theta + \sin\theta)^{2} - 1^{2}}$	[1]
	$= \frac{\cos^2\theta + 1 + 2\cos\theta - \sin^2\theta}{\cos^2\theta + \sin^2\theta + 2\sin\theta\cos\theta - 1}$	
	$= \frac{2\cos^2\theta + 2\cos\theta}{2\sin\theta\cos\theta}$ $= \frac{2\cos\theta(\cos\theta + 1)}{2\sin\theta\cos\theta}$	[1]
	$= \frac{\cos \theta + 1}{\sin \theta} = \operatorname{cosec} \theta + \cot \theta = \operatorname{RHS}$	[1]

28. In
$$\triangle BTP \Rightarrow \tan 30^\circ = \frac{TP}{BP}$$

 $\Rightarrow \frac{1}{\sqrt{3}} = \frac{TP}{BP}$
 $BP = TP\sqrt{3}$...(i) [1/2]
 $BP = TP\sqrt{3}$...(i) [1/2]
 $In \land GTR$, [1/2]
 $In \land GTR$, [1/2]
 $In \land GTR$, [1/2]
 $Now, TP\sqrt{3} = \frac{TR}{GR} \Rightarrow \sqrt{3} = \frac{TR}{GR} \Rightarrow GR = \frac{TR}{\sqrt{3}}$...(ii) [1/2]
 $Now, TP\sqrt{3} = \frac{TR}{\sqrt{3}}$ (as BP = GR)
 $\Rightarrow 3TP = TP + PR$
 $\Rightarrow 2TP = BG \Rightarrow TP = \frac{50}{2}m = 25 m$ [1]
Now, TR = TP + PR = (25 + 50) m.
Height of tower = TR = 75 m.
Distance between building and tower = GR = $\frac{TR}{\sqrt{3}}$
 $\Rightarrow GR = \frac{75}{\sqrt{3}}m = 25\sqrt{3} m$ [1/2]
29. Capacity of mug (actual quantity of milk) = $\pi r^2h - \frac{2}{3}\pi r^3$ [1]
 $= \pi r^2 \left(h - \frac{2}{3}r\right)$
 $= \frac{227}{7} \times \frac{7}{2} \times \frac{7}{2} \times \left(14 - \frac{2}{3} \times \frac{7}{2}\right)$
 $= \frac{2695}{6} cm^3$ [1]
Amount dairy owner B should charge for one mug of milk
 $= \frac{2695}{6} \times \frac{80}{1000} = ₹ 35.93$ [1]

