Buy Recommended **Mample in ap State of the horse** https://bit.ly/3EoIPSf

Mathematics –Basic(241) Class- X Session- 2021-22 TERM II

Q.N.		HIN	TS/SOLUTION		Marks
1	$3x^2 - 7x - 6 = 0$				
	$\Rightarrow 3x^2 - 9x + 2x - 6$	$\tilde{b} = 0$			1/2
	$\Rightarrow 3x(x-3) + 2(x-3)$	-3) = 0			
	$\Rightarrow (x-3)(3x+2) =$: 0			1/2
	$x = 3, -\frac{2}{3}$				
	$\therefore x = 3, -\frac{1}{3}$				1
			OR		
	Since the roots are	real and equal, .	$D = b^2 - 4ac = 0$		
	$\Rightarrow k^2 - 4 \times 3 \times 3 = 0 (:$	a = 3, b = k, c =	= 3)		1
	\Rightarrow k ² = 36				
	\Rightarrow k = 6 or -6				1/2 +1/2
2	Let <i>l</i> be the side of t	he cube and L, E	B, H be the dimensions o	of the cuboid	
	Since $l^3 = 64 \ cm^3 : l$	t = 4 cm			1/2
	Total surface area of o	cuboid is $2[LB + B]$	(BH + HL), Where L=12, B=	:4 and H=4	1/2
	$=2(12 \times 4 + 4 \times 4 +$				1/2 1
3	Runs scored	Frequency	Cumulative Frequency		Т
	0-20	4	4		
	20-40	6	10		
	40-60	5	15		
	60-80	3	18		1/2
	80-100	4	22		1/2
		(1.1)		•	
	Total frequen	• ` '			
	$\frac{N}{2}$ = 11; So 40-60 is the	e median class.			1/2
	Median = $l + \frac{\left(\frac{N}{2}\right) - cf}{f} \times$	h			1/2
					1/2
	$= 40 + \frac{11 - 10}{5} \times 2$	20			
	= 44 runs				1/2
4	The common difference		!- E # AD !		1
		a common differe	nce is 5, then new AP is,		
	6, 6+5, 6+10				1
5	=6,11,16 ∴ Mode = 38.				<u> </u>
	∴ The modal class is 3	30-40.			1/2
	The medal older is				
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times$	h			
	$2f_1-f_0-f_2$				1/2

	=30 + $\frac{16-13uy}{32-12-x}$ Recommended Sample Paper Books - https://bit.ly/3EoIPSf	1/2
	4 10 0	
	$\frac{4}{20-x}$ x 10 =8	
	8(20-x) = 40	
	20-x= 5	1/2
	X= 15	1,2
6	X D Y	
	M E N	
	∴ XY is the tangent to the circle at the point D ∴ $OD \perp XY \Rightarrow \angle ODX = 90^{0} \Rightarrow \angle EDX = 90^{0}$	1/2
	Also, MN is the tangent to the circle at E	
	$\therefore OE \perp MN \Rightarrow \angle OEN = 90^{\circ} \Rightarrow \angle DEN = 90^{\circ}$	1/2
	$\Rightarrow \angle EDX = \angle DEN (each 90^{\circ}).$,
	which are alternate interior angles.	1
	∴ XY MN	1
	OR	
	∴ Tangent segments drawn from an external point to a circle are equal ∴ BP=BQ CR=CQ DR=DS AP=AS A P B	
	,	
	⇒BP+CR+DR+AP = BQ+CQ+DS+AS	1
	⇒ AB+DC = BC+AD	
	∴ AD= 10-7= 3 cm	1
	Section-B	
		1

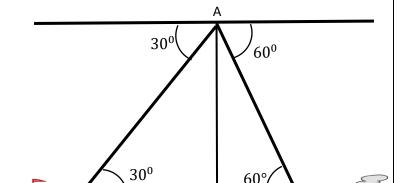
		T 1
7	First Term of the Recanned Sample Paper Books - https://bit.ly/3EoIPSf Common difference (d) = 8-5=3	
	Last term = a_{40} = a+(40-1) d	
	$= 5 + 39 \times 3 = 122$	1
	Also $a_{31} = a + 30d = 5 + 30 \times 3 = 95$	1
	Sum of last 10 terms = $\frac{n}{2}(a_{31} + a_{40})$	
	$=\frac{10}{2}(95+122)$	
	$= 5 \times 217 = 1085$	1
8		
	Let, AB be the tree broken at C, Also let $AC = x$	
	In \triangle CAD, $\sin 30^0 = \frac{AC}{DC}$	1
	$\Rightarrow \frac{1}{2} = \frac{x}{8}$	_
	$\Rightarrow x = 4 m$	1/2
	⇒the length of the tree is = 8+4 =12m	1/2
	8m x	
	30 •	1(correct
	D^{D} A	Fig.)
	OR	
	Let AB and CD be two poles of height h meters also let P be a point between them on the road which is x meters away from foot of first pole AB, PD= (80-x) meters.	
	In $\triangle ABP$, $tan60^o = \frac{h}{x} \Rightarrow h = x\sqrt{3}$ (1)	1
	In $\triangle CDP$, $tan 30^o = \frac{h}{80-x} \Rightarrow h = \frac{80-x}{\sqrt{3}}$ (2)	1/2
	$x\sqrt{3} = \frac{80 - x}{\sqrt{3}} [\because LHS(1) = LHS(2), so \ equating \ RHS]$	
	$ \sqrt{3} $ $ \Rightarrow 3x = 80 - x \Rightarrow 4x = 80 \Rightarrow x = 20m $	
	So, $80 - x = 80 - 20 = 60m$	1/2
	Hence the point is 20m from one pole and 60 meters from the other pole.	·
	A C	
	h h	
	B 60° 30° D	1(correct Fig.)
	В х Р 80-х	- '6'/

	Buy Recommended Sample Paper Books - https://bit.ly/3EoIPSf	
9	PA = PB (Tangent segments drawn to a circle from an external point are equal)	
	∴ In $\triangle APB$, \angle PAB = \angle PBA	
	Also, \angle APB = 60°	1
	In $\triangle APB$, sum of three angles is 180° .	
	Therefore, \angle PAB + \angle PBA = 180° - \angle APB= 180° - 60° = 120° .	
	$\therefore \angle PAB = \angle PBA = 60^{\circ} (\because \angle PAB = \angle PBA)$	1
	$\because \Delta APB$ is an equilateral triangle.	
	So, $AB = 6cm$	1
10	Let the three consecutive multiples of 5 be 5x, 5x+5, 5x+10.	
	Their squares are $(5x)^2$, $(5x + 5)^2$ and $(5x + 10)^2$.	
	$(5x)^2 + (5x+5)^2 + (5x+10)^2 = 725$	1
	$\Rightarrow 25x^2 + 25x^2 + 50x + 25 + 25x^2 + 100x + 100 = 725$	
	$\Rightarrow 75x^2 + 150x - 600 = 0$	
	$\Rightarrow x^2 + 2x - 8 = 0$	
	$\Rightarrow (x+4)(x-2) = 0$	
	$\Rightarrow x = -4,2$ $\Rightarrow x = 2 \text{ (ignoring, ye yello)}$	1
	\Rightarrow $x = 2$ (ignoring –ve value) So the numbers are 10, 15 and 20	1
	Section-C	<u> </u>
	Occitor O	

|--|

Buy Recommended Sample Paper Books - https://bit.ly/3EoIPSf OR 60° 120°(**♦** O Draw a circle of radius 6cm Draw OA and Construct $\angle AOB = 120^{\circ}$ 1 Draw $\angle OAP = \angle OBP = 90^{\circ}$ 1 PA and PB are required tangents 1 Join OP and apply $\tan \angle APO = \tan 30^{\circ} = \frac{6}{PA}$ 1 ⇒ Length of tangent = $6\sqrt{3}$ cm 12 Converting the cumulative frequency table into exclusive classes, we get: Age No of passengers(fi) $f_i x_i$ Χį 0-10 14 5 70 10-20 30 15 450 25 20-30 38 950 35 1820 30-40 52 2 45 2250 40-50 50 61 55 3355 50-60 60-70 42 65 2730 975 70-80 13 75 $\Sigma f_i = 300$ $\sum f_i x_i =$ 12600 Mean age = $\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{12600}{300}$ 1 $\bar{x} = 42$

1



The ship is reare Recording this block Sastiple of Beauty Sciont to gride itely/3 EoIPSf

In
$$\triangle$$
 ACB, $\tan 60^{\circ} = \frac{AB}{BC}$

$$\Rightarrow \sqrt{3} = \frac{40}{BC}$$

: BC =
$$\frac{40}{\sqrt{3}} = \frac{40\sqrt{3}}{3}m$$

В

60°

(ii)

In \triangle ADB, $\tan 30^{\circ} = \frac{AB}{BD}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{40}{DB}$$

$$\therefore$$
 DB = $40\sqrt{3}m$

1

1

1

Time taken to cover this distance = $(\frac{60}{2000} \times 40\sqrt{3})$ minutes

$$=\frac{60\sqrt{3}}{100}$$
 = 2.076 minutes

1

Let r_1 and r_2 be respectively the radii of apples and oranges 14 (i)

$$: 2r_1: 2r_2 = 2: 3 \Rightarrow r_1: r_2 = 2: 3$$

$$4\pi r_1^2 : 4\pi r_2^2 = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{2}{3}\right)^2 = 4:9$$

$$1\frac{1}{2}$$

Let the height of the drum be h. (ii)

Volume of the drum = volume of the cylinder + volume of the sphere

$$\pi 3^2 h = (\pi 3^2 \times 8 + \frac{4}{3}\pi 3^3) cm^3$$

$$\Rightarrow h = (8+4)cm$$

$$\Rightarrow h = 12cm$$

1

1

Buy Recommended Sample Paper Books - https://bit.ly/3EoIPSf