1. Let $A B$ and $C D$ be two towers of height x and y respectively.

$\because E$ is the midpoint of $B D . \therefore B E=E D$
Now, in $\triangle A B E, \tan 30^{\circ}=\frac{A B}{B E}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{x}{B E} \Rightarrow x=\frac{B E}{\sqrt{3}}$
And in $\triangle E D C, \tan 60^{\circ}=\frac{C D}{E D}$
$\Rightarrow \sqrt{3}=\frac{y}{E D} \Rightarrow y=\sqrt{3} B E \quad(\because B E=E D)$
$\therefore \quad \frac{x}{y}=\frac{B E}{\sqrt{3}} \times \frac{1}{\sqrt{3} B E}=\frac{1}{3}$
Thus, $x: y=1: 3$.
2. Since, angle subtended by an arc at the centre is double the angle subtended by the same arc at the remaining part of the circle.
$\therefore 2 \angle A B Q=\angle A O Q$
$\Rightarrow \angle A B T=\frac{58^{\circ}}{2} \Rightarrow \angle A B T=29^{\circ}$
Also, $\angle B A T=90^{\circ}(\because$ Tangent is perpendicular to the radius through the point of contact)
In $\triangle A B T, \angle A B T+\angle B A T+\angle A T B=180^{\circ}$
$\Rightarrow 29^{\circ}+90^{\circ}+\angle A T Q=180^{\circ}$
$\Rightarrow \angle A T Q=180^{\circ}-119^{\circ}=61^{\circ}$
3. The frequency distribution table from the given data can be drawn as :

Class interval	Frequency
$0-20$	15
$20-40$	$37-15=22$
$40-60$	$56-37=19$
$60-80$	$87-56=31$
$80-100$	$115-87=28$

The modal class is $60-80$ as it has the maximum frequency.
4. We have, first term, $a=3$,
common difference, $d=15-3=12$
$n^{\text {th }}$ term of an A.P. is given by $a_{n}=a+(n-1) d$
$\therefore \quad a_{21}=3+(20) \times 12=3+240=243$

Let the $r^{\text {th }}$ term of the A.P. be 120 more than the $21^{\text {st }}$ term.
$\Rightarrow a+(r-1) d=243+120 \Rightarrow 3+(r-1) 12=363$
$\Rightarrow(r-1) 12=360 \Rightarrow r-1=30 \Rightarrow r=31$

OR

Let the four terms are $a-3 d, a-d, a+d$ and $a+3 d$.
Sum of four terms $=50$
[Given]
$\Rightarrow 4 a=50 \Rightarrow a=25 / 2$
According to the question, $a+3 d=4(a-3 d)$
$\Rightarrow a+3 d=4 a-12 d \Rightarrow 15 d=3 a$
$\Rightarrow d=a / 5=\frac{25}{2 \times 5}$
[Using (i)]
$\Rightarrow d=5 / 2$
\therefore Numbers are 5, 10, 15 and 20 .
5. Let $A B$ be the pole and $B C$ be its shadow.

Then, $A B=14 \mathrm{~m}, B C=14 \sqrt{3} \mathrm{~m}$
Also, let θ be the sun's elevation, i.e., $\angle A C B=\theta$
In right $\triangle A B C$,

$$
\tan \theta=\frac{A B}{B C}=\frac{14}{14 \sqrt{3}}
$$

$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$

But we know that, $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\therefore \theta=30^{\circ}$
So, required angle of elevation is 30°.
6. Let radius of hemisphere $=r \mathrm{~cm}$

Total surface area of hemisphere $=462 \mathrm{~cm}^{2}$
$\Rightarrow 3 \pi r^{2}=462 \Rightarrow r^{2}=\frac{462 \times 7}{3 \times 22}=49 \Rightarrow r=7$
\therefore Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
=\frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7=718.67 \mathrm{~cm}^{3}
$$

OR
Let the side of each cube be x.
Given, volume of each cube
$=125 \mathrm{~cm}^{3}$
$\therefore \quad x^{3}=125 \mathrm{~cm}^{3}$

$\Rightarrow x=5 \mathrm{~cm}$
Now, length of resulting cuboid $(l)=2 x=10 \mathrm{~cm}$
Breadth of resulting cuboid $(b)=x=5 \mathrm{~cm}$
Height of resulting cuboid $(h)=x=5 \mathrm{~cm}$
\therefore Surface area of the cuboid $=2(l b+b h+h l)$
$=2(10 \times 5+5 \times 5+5 \times 10)=2[50+25+50]$

$$
=250 \mathrm{~cm}^{2}
$$

7. Here, the frequency distribution table is given in inclusive form. So, we first convert it into exclusive form. \therefore The cumulative frequency distribution table in exclusive form is as follows :

Weekly wages (in ₹)	No. of workers	Cumulative frequency
$59.5-69.5$	5	5
$69.5-79.5$	15	20
$79.5-89.5$	20	40
$89.5-99.5$	30	70
$99.5-109.5$	20	90
$109.5-119.5$	8	98
	$N=\Sigma f_{i}=98$	

We have, $n=98 \therefore n / 2=49$
The cumulative frequency just greater than $n / 2$ is 70 and the corresponding class is 89.5-99.5. So, 89.5-99.5 is the median class.
$\therefore l=89.5, h=10, f=30$ and $c f=40$
$\therefore \quad$ Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$

$$
=89.5+\left(\frac{49-40}{30}\right) \times 10=92.5
$$

8. Steps of construction :

Step-I : Draw a line segment $A B=8.4 \mathrm{~cm}$.
Step-II : Draw any ray $A X$ making an acute angle with $A B$.
Step-III : On ray $A X$, mark $5+9=14$ points A_{1}, A_{2}, A_{3}, \ldots, A_{14} such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=\ldots .=A_{13} A_{14}$. Step-IV : Join $A_{14} B$.
Step-V : From A_{5}, draw $A_{5} P \| A_{14} B$, meeting $A B$ at P. Thus, P divides $A B$ in the ratio $5: 9$.
On measuring the two parts, we get $A P=3 \mathrm{~cm}$ and $P B=5.4 \mathrm{~cm}$.

OR

Steps of construction :

Step-I : Draw two concentric circle with centre O and radii 5 cm and 7 cm . Take a point B on the outer circle and then join $O B$.
Step-II : Draw the perpendicular bisector of $O B$.

Step-III : With C as centre and $O C$ as radius, draw a circle which intersects the inner circle at P and Q.
Step-IV : Join $B P$ and $Q B$.
Thus, $B P$ and $B Q$ are the required tangents.
9. Let one aeroplane be at A and second be at D such that vertical distance between two planes is $h \mathrm{~m}$.

In $\triangle A B C, \tan 60^{\circ}=\frac{A C}{B C}$
$\Rightarrow \sqrt{3}=\frac{4000}{x} \Rightarrow x=\frac{4000}{\sqrt{3}}$
In $\triangle D B C, \tan 45^{\circ}=\frac{D C}{B C}$
$\Rightarrow 1=\frac{4000-h}{x} \Rightarrow x=4000-h$
$\Rightarrow \frac{4000}{\sqrt{3}}=4000-h$
[Using (i)]
$\Rightarrow h=4000-\frac{4000}{\sqrt{3}}=4000-\frac{4000 \sqrt{3}}{3}$
$\Rightarrow h=\frac{12000-6920}{3}=\frac{5080}{3}=1693.33$
Hence, vertical distance between the aeroplanes at that instant was 1693.33 m .
10. Total number of students $=150$

Mean weight $=60 \mathrm{~kg}$
\therefore Total weight of 150 students $=150 \times 60=9000 \mathrm{~kg}$
Let the total number of boys be x.
\therefore Total number of girls $=150-x$
Mean weight of boys $=70 \mathrm{~kg}$
\therefore Total weight of boys $=70 \times x=70 x \mathrm{~kg}$
Mean weight of girls $=55 \mathrm{~kg}$
\therefore Total weight of girls $=(150-x) 55 \mathrm{~kg}$
Now, Total weight $=$ Weight of boys + Weight of girls
$\Rightarrow 9000=70 x+(150-x) 55$
$\Rightarrow 9000=70 x+150 \times 55-55 x$
$\Rightarrow 9000-8250=70 x-55 x$
$\Rightarrow 750=15 x \Rightarrow x=50$
\therefore Number of boys $=50$ and number of girls $=100$
11. Let a be the first term and d be the common difference of the A.P.

$$
\begin{align*}
\therefore \quad S_{1} & =\frac{n}{2}[2 a+(n-1) d] \tag{i}\\
S_{2} & =\frac{2 n}{2}[2 a+(2 n-1) d] \tag{ii}
\end{align*}
$$

and $S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]$
R.H.S. $=3\left(S_{2}-S_{1}\right)$
$=3\left[\frac{2 n}{2}(2 a+2 n d-d)-\frac{n}{2}(2 a+n d-d)\right]$
$=3 \cdot \frac{n}{2}[2(2 a+2 n d-d)-(2 a+n d-d)]$
$=\frac{3 n}{2}[4 a+4 n d-2 d-2 a-n d+d]$
$=\frac{3 n}{2}[2 a+3 n d-d]$
$=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}$
$=$ L.H.S.
12. Since, tangents drawn from an external point to a circle are equal.
$\therefore A D=A F=x$ (say)
$B D=B E=y$ (say)
$C E=C F=z$ (say)
According to the question,
$A B=x+y=24 \mathrm{~cm} . . .(\mathrm{i})$
$B C=y+z=16 \mathrm{~cm}$
$A C=x+z=20 \mathrm{~cm}$
Subtracting (iii) from (i), we get
$y-z=4$
Adding (ii) and (iv), we get
$2 y=20 \Rightarrow y=10 \mathrm{~cm}$
Substituting the value of y in (i) and (ii), we get
$x=14 \mathrm{~cm}, z=6 \mathrm{~cm}$
$\therefore A D=14 \mathrm{~cm}, B E=10 \mathrm{~cm}$ and $C F=6 \mathrm{~cm}$.

OR

Let us consider a circle with centre O and C is the mid point of arc $A C B$ and $D E$ is a tangent to the circle.
Now, we need to prove that $A B \| D E$ Join $O A, O B$ and $O C$.
Since C is the mid point of arc $A C B$.
$\therefore \angle A O F=\angle B O F$
[$\because O A$ and $O B$ are equally inclined with $O C]$
Now, in $\triangle O A F$ and $\triangle O B F$,
$O A=O B$
[Radii of the circle]
$\angle A O F=\angle B O F$
[Proved above]
$O F=O F$
[Common]
$\therefore \quad \triangle O A F \cong \triangle O B F \quad$ [By SAS congruence criterion]
$\Rightarrow \angle A F O=\angle B F O$
[By CPCT]
Now, $\angle A F O+\angle B F O=180^{\circ} \quad$ [Linear pair]
$\Rightarrow 2 \angle A F O=180^{\circ} \Rightarrow \angle A F O=90^{\circ}$
Also, $\angle O C D=90^{\circ}$
$[\because$ Tangent is perpendicular to radius through the point of contact.]
$\therefore \angle A F O=\angle O C D$
[Each 90°]
But these are corresponding angles.
$\therefore A B \| D E$
13. (i) Let two consecutive integers be $x, x+1$.

Given, $x^{2}+(x+1)^{2}=650$
$\Rightarrow 2 x^{2}+2 x+1-650=0$
$\Rightarrow 2 x^{2}+2 x-649=0$
(ii) Let the number be x.

According to question, $x^{2}-84=3(x+8)$
$\Rightarrow x^{2}-84=3 x+24 \Rightarrow x^{2}-3 x-108=0$
14. (i) Required area of canvas $=$ Curved surface area of cone + Curved surface area of cylinder
$=\pi r l+2 \pi r h=\pi r(l+2 h)$
$=\frac{22}{7} \times 21(29+44)$
$\left[\begin{array}{rl}\because l=\sqrt{r^{2}+h_{1}^{2}} & =\sqrt{(21)^{2}+(20)^{2}} \\ & =\sqrt{841}=29 \mathrm{~m}\end{array}\right]$

$=4818 \mathrm{~m}^{2}$
(ii) Volume of tent $=$ Volume of cone + Volume of cylinder $=\frac{1}{3} \pi r^{2} h_{1}+\pi r^{2} h=\pi r^{2}\left(\frac{1}{3} h_{1}+h\right)$, where h_{1} is the height of cone.
$=\frac{22}{7} \times(21)^{2}\left[\frac{20}{3}+22\right]=\frac{9702}{7} \times \frac{86}{3}=39732 \mathrm{~m}^{3}$

Self Evaluation Sheet

Once you complete SQP-3, check your answers with the given solutions and fill your marks in the marks obtained column according to the marking scheme. Performance Analysis Table given at the bottom will help you to check your readiness.

Q. No.	Chapter	Marks Per Question	Marks Obtained
1	Some Applications of Trigonometry	2	
2	Circles	2	
3	Statistics	2	
4	Arithmetic Progressions / Arithmetic Progressions	2	
5	Statistics	2	
6	Surface Areas and Volumes / Surface Areas and Volumes	2	
7	Statistics	3	
8	Constructions / Constructions	3	
9	Some Applications of Trigonometry	3	
10	Statistics	3	
11	Arithmetic Progressions	4	
12	Circles / Circles	4	
13	Quadratic Equations	2×2	
14	Surface Areas and Volumes	2×2	
Total Marks		40	\ldots.
		Percentage

Performance Analysis Table

If your marks is		
(4)	> 90\%	TREMENDOUS!
(-)	81-90\%	EXCELLENT!
())	71-80\%	VERY GOOD!
($)$	61-70\%	G00D!
\because	51-60\%	FAIR PERFORMANCE!
\bullet	40-50\%	AVERAGE!

> You are done! Keep on revising to maintain the position.
> You have to take only one more step to reach the top of the ladder. Practise more.

- A little bit of more effort is required to reach the 'Excellent' bench mark.
- Revise thoroughly and strengthen your concepts.
> Need to work hard to get through this stage.
> Try hard to boost your average score.

