< SOLUTIONS

1. $\int \frac{\cos (x+a)}{\sin (x+b)} d x=\int \frac{\cos (x+b+a-b)}{\sin (x+b)} d x$

$$
=\int \frac{\cos (x+b) \cos (a-b)-\sin (x+b) \sin (a-b)}{\sin (x+b)} d x
$$

$$
=\cos (a-b) \int \frac{\cos (x+b)}{\sin (x+b)} d x-\sin (a-b) \int d x
$$

$$
=\cos (a-b) \log \sin (x+b)-x \sin (a-b)+C
$$

2. Order $=2$, Degree $=3$
\therefore Required sum $=2+3=5$

OR

We have, $x \frac{d y}{d x}+2 y=x^{2} \Rightarrow \frac{d y}{d x}+2 \frac{y}{x}=x$
$\therefore \quad$ I.F. $=e^{\int \frac{2}{x} d x}=e^{2 \log x}=e^{\log x 2}=x^{2}$
3. We have, $l=\cos \frac{\pi}{3}=\frac{1}{2}, m=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ and $n=\cos \theta$

Now, $l^{2}+m^{2}+n^{2}=1$
$\Rightarrow\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+n^{2}=1$
$\Rightarrow \frac{1}{4}+\frac{1}{2}+n^{2}=1 \Rightarrow n^{2}=\frac{1}{4} \Rightarrow n= \pm \frac{1}{2}$
$\Rightarrow \cos \theta= \pm \frac{1}{2}$
But θ is an acute angle (given).
$\therefore \quad \theta=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
4. We have, $P(A)=\frac{2}{5}, P(B)=\frac{1}{3}, P(C)=\frac{1}{2}$,

Also, $P(A \cap C)=\frac{1}{5}$ and $P(B \cap C)=\frac{1}{4}$
$\therefore \quad P(C / B)=\frac{P(C \cap B)}{P(B)}=\frac{1 / 4}{1 / 3}=\frac{3}{4}$
and, $P(\bar{A} \cap \bar{C})=P(\overline{A \cup C})$
$=1-\{P(A)+P(C)-P(A \cap C)\}=1-\left(\frac{2}{5}+\frac{1}{2}-\frac{1}{5}\right)=\frac{3}{10}$
5. The given line is $5 x-3=15 y+7=3-10 z$
$\Rightarrow \frac{x-\frac{3}{5}}{\frac{1}{5}}=\frac{y+\frac{7}{15}}{\frac{1}{15}}=\frac{z-\frac{3}{10}}{-\frac{1}{10}}$
Its direction ratios are $\frac{1}{5}, \frac{1}{15},-\frac{1}{10}$
i.e., Its direction ratios are proportional to 6, 2, -3 .

Now, $\sqrt{6^{2}+2^{2}+(-3)^{2}}=7$
\therefore Its direction cosines are $\frac{6}{7}, \frac{2}{7},-\frac{3}{7}$.
6. Let E_{1} : "A woman is selected", E_{2} : "A Hindi knowing person is selected" and E_{3} : "A teacher is selected", then $P\left(E_{1}\right)=\frac{20}{50}=\frac{2}{5}, P\left(E_{2}\right)=\frac{10}{50}=\frac{1}{5}$, and $P\left(E_{3}\right)=\frac{15}{50}=\frac{3}{10}$
\therefore Required probability $=P\left(E_{1} \cap E_{2} \cap E_{3}\right)$

$$
\begin{equation*}
=P\left(E_{1}\right) \times P\left(E_{2}\right) \times P\left(E_{3}\right)=\frac{2}{5} \times \frac{1}{5} \times \frac{3}{10}=\frac{3}{125} \tag{1}
\end{equation*}
$$

7. Let $I=\int \frac{x}{(x-1)^{2}(x+2)} d x$.

Let $\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2}$

$$
\begin{equation*}
\Rightarrow x=A(x-1)(x+2)+B(x+2)+C(x-1)^{2} \tag{2}
\end{equation*}
$$

Comparing coefficients in (3), we get
$0=A+C ; 1=A+B-2 C ; 0=-2 A+2 B+C$
Solving these, we get

$$
\begin{aligned}
& A=\frac{2}{9}, B=\frac{1}{3}, C=-\frac{2}{9} \\
& \therefore \quad I=\frac{2}{9} \int \frac{1}{x-1} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{x+2} d x \\
& \quad=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3} \cdot \frac{1}{x-1}+C_{1}
\end{aligned}
$$

OR
$\int \sin x \sin 2 x \sin 3 x d x$
$=\int \sin 3 x \sin x \sin 2 x d$.
$=\frac{1}{2} \int(\cos 2 x-\cos 4 x) \sin 2 x d x$
$=\frac{1}{2} \int \sin 2 x \cos 2 x d x-\frac{1}{2} \int \cos 4 x \sin 2 x d x$
$=\frac{1}{4} \int \sin 4 x d x-\frac{1}{4} \int(\sin 6 x-\sin 2 x) d x$
$=\frac{1}{4} \int \sin 4 x d x-\frac{1}{4} \int \sin 6 x d x+\frac{1}{4} \int \sin 2 x d x$
$=\frac{1}{4}\left[\frac{-\cos 4 x}{4}-\frac{(-\cos 6 x)}{6}+\frac{(-\cos 2 x)}{2}\right]+C$
$=\frac{1}{4}\left[\frac{\cos 6 x}{6}-\frac{\cos 4 x}{4}-\frac{\cos 2 x}{2}\right]+C$
8. We have, $\frac{d y}{d x}+2 y \tan x=\sin x$

It is linear differential equation of the form
$\frac{d y}{d x}+P y=Q$
where $P=2 \tan x$, and $Q=\sin x$
Now, I.F. $=e^{\int 2 \tan x d x}=e^{2 \log |\sec x|}=\sec ^{2} x$
$\therefore \quad y\left(\sec ^{2} x\right)=\int\left(\sec ^{2} x\right)(\sin x) d x$
$\Rightarrow y\left(\sec ^{2} x\right)=\int \sec x \tan x d$
$\Rightarrow y\left(\sec ^{2} x\right)=\sec x+C$
When $x=\frac{\pi}{3}, y=0$
$\therefore \quad(0)\left[\sec ^{2}(\pi / 3)\right]=\sec (\pi / 3)+C \Rightarrow C=-2$
Hence, $y\left(\sec ^{2} x\right)=\sec x-2$ i.e., $y=\cos x-2 \cos ^{2}$ x is the required solution.
9. Let $A(2 \hat{i}-\hat{j}+\hat{k}), B(3 \hat{i}+7 \hat{j}+\hat{k})$ and $C(5 \hat{i}+6 \hat{j}+2 \hat{k})$
Then, $\overrightarrow{A B}=(3-2) \hat{i}+(7+1) \hat{j}+(1-1) \hat{k}=\hat{i}+8 \hat{j}$
$\overrightarrow{A C}=(5-2) \hat{i}+(6+1) \hat{j}+(2-1) \hat{k}=3 \hat{i}+7 \hat{j}+\hat{k}$
$\overrightarrow{B C}=(5-3) \hat{i}+(6-7) \hat{j}+(2-1) \hat{k}=2 \hat{i}-\hat{j}+\hat{k}$
Now, angle (θ) between $\overrightarrow{A C}$ and $\overrightarrow{B C}$ is given by
$\Rightarrow \quad \cos \theta=\frac{\overrightarrow{A C} \cdot \overrightarrow{B C}}{|\overrightarrow{A C}||\overrightarrow{B C}|}=\frac{6-7+1}{\sqrt{9+49+1} \sqrt{4+1+1}}$
$\Rightarrow \cos \theta=0 \Rightarrow A C \perp B C$
So, A, B, C are the vertices of right angled triangle.
10. Any point on the given line,
$\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}=k$ (say)
is $R(2 k+1,-3 k-1,8 k-10)$
Since, this is the foot of the \perp from $P(1,0,0)$ on (i), then $(2 k+1-1) \cdot 2+(-3 k-1-0) \cdot(-3)+(8 k-10-0) \cdot 8=0$ $\Rightarrow 4 k+9 k+3+64 k-80=0 \Rightarrow 77 k=77 \Rightarrow k=1$
$\therefore R$ is $(3,-4,-2)$.
This is the required foot of perpendicular.
Also, perpendicular distance $=P R$
$=\sqrt{(3-1)^{2}+(-4-0)^{2}+(-2-0)^{2}}=\sqrt{24}=2 \sqrt{6}$ units.
Also equation of line $P R$ is $\frac{x-1}{2}=\frac{y}{-4}=\frac{z}{-2}$

OR

Given that $-6,3,4$ are intercepts on x, y and z-axes respectively.
\therefore Equation of the plane is $\frac{x}{-6}+\frac{y}{3}+\frac{z}{4}=1$
$\Rightarrow-2 x+4 y+3 z-12=0$
\therefore Length of the perpendicular from origin to the plane $-2 x+4 y+3 z-12=0$ is
$\left|\frac{-2 \times 0+4 \times 0+3 \times 0-12}{\sqrt{(-2)^{2}+4^{2}+3^{2}}}\right|=\frac{12}{\sqrt{29}}$ units
11. We have $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$...(i) and $\frac{x}{3}+\frac{y}{2}=1$

Curve (i) is an ellipse of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
That means its major axis is along x-axis. Also this ellipse is symmetrical about the x-axis.

Required area $=\frac{2}{3} \int_{0}^{3} \sqrt{(3)^{2}-x^{2}} d x-\frac{2}{3} \int_{0}^{3}(3-x) d x$
$=\frac{2}{3}\left[\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)\right]_{0}^{3}-\frac{2}{3}\left[\frac{(3-x)^{2}}{-2}\right]_{0}^{3}$
$=\frac{2}{3}\left[\left(0+\frac{9}{2} \sin ^{-1}(1)\right)-\left(0+\frac{9}{2} \sin ^{-1}(0)\right)\right]+\frac{1}{3}\left[0^{2}-9\right]$
$=\frac{3 \pi}{2}-3$ sq. units.
12. The given line is
$\vec{r}=(2 \hat{i}-4 \hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$
$\Rightarrow \frac{x-2}{3}=\frac{y+4}{4}=\frac{z-2}{2}=\lambda$ (say)
Any point on it is $(3 \lambda+2,4 \lambda-4,2 \lambda+2)$
This lies on the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=0$
i.e., $x-2 y+z=0$
$\therefore 3 \lambda+2-2(4 \lambda-4)+2 \lambda+2=0$
$\Rightarrow-3 \lambda+12=0 \Rightarrow \lambda=4$
\therefore The point of intersection of (i) and (ii) is

$$
(3 \times 4+2,4 \times 4-4,2 \times 4+2)=(14,12,10)
$$

Its distance from the point $(2,12,5)$
$=\sqrt{(14-2)^{2}+(12-12)^{2}+(10-5)^{2}}$
$=\sqrt{144+0+25}=\sqrt{169}=13$ units.
13. Consider the following events.
E : Two balls drawn are white
A : There are 2 white balls in the bag
B : There are 3 white balls in the bag
C : There are 4 white balls in the bag

$$
\begin{aligned}
& P(A)=P(B)=P(C)=\frac{1}{3} \\
& P(E / A)=\frac{{ }^{2} C_{2}}{{ }^{4} C_{2}}=\frac{1}{6}, P(E / B)=\frac{{ }^{3} C_{2}}{{ }^{4} C_{2}}=\frac{3}{6}=\frac{1}{2} \\
& P(E / C)=\frac{{ }^{4} C_{2}}{{ }^{4} C_{2}}=1 \\
& \therefore \quad P(C / E)=\frac{P(C) \cdot P(E / C)}{P(A) \cdot P(E / A)+P(B) \cdot P(E / B)+} \\
& \quad=\frac{\frac{1}{3} \times 1}{\frac{1}{3} \times \frac{1}{6}+\frac{1}{3} \times \frac{1}{2}+\frac{1}{3} \times 1}=\frac{3}{5} \\
& \text { OR }
\end{aligned}
$$

Consider the following events:
$E_{i}=$ Seed chosen is of type $A_{i}, i=1,2,3$
$A=$ Seed chosen germinates.
We have, $P\left(E_{1}\right)=\frac{4}{10}, P\left(E_{2}\right)=\frac{4}{10}$ and $P\left(E_{3}\right)=\frac{2}{10}$

$$
P\left(A / E_{1}\right)=\frac{45}{100}, P\left(A / E_{2}\right)=\frac{60}{100}, P\left(A / E_{3}\right)=\frac{35}{100}
$$

(a) Required probability $=P\left(\bar{A} / E_{3}\right)=1-P\left(A / E_{3}\right)$

$$
=1-\frac{35}{100}=\frac{65}{100}=0.65
$$

(c) Required probability $=P\left(E_{2} / \bar{A}\right)$

$$
\begin{aligned}
& =\frac{P\left(E_{2} \cap \bar{A}\right)}{P(\bar{A})}=\frac{P\left(E_{2}\right) P\left(\bar{A} / E_{2}\right)}{P(\bar{A})}=\frac{P\left(E_{2}\right)\left(1-P\left(A / E_{2}\right)\right)}{1-P(A)} \\
& =\frac{\frac{4}{10} \times\left(1-\frac{60}{100}\right)}{1-\frac{49}{100}}=\frac{\frac{4}{10} \times \frac{40}{100}}{\frac{51}{100}}=\frac{16}{51}
\end{aligned}
$$

14. (i) Let $I=\int_{\mathrm{I}}^{x} \sin 3 x d x$

$$
\begin{aligned}
& =x \int \sin 3 x d x-\int\left(\frac{d}{d x}(x) \int \sin 3 x d x\right) d x \\
& =x\left(-\frac{\cos 3 x}{3}\right)-\int 1\left(-\frac{\cos 3 x}{3}\right) d x+c \\
& =-\frac{x \cos 3 x}{3}+\frac{1}{3} \int \cos 3 x d x+c \\
& \therefore \quad I=-\frac{x \cos 3 x}{3}+\frac{1}{3} \cdot \frac{\sin 3 x}{3}+c \\
& \quad=-\frac{x \cos 3 x}{3}+\frac{\sin 3 x}{9}+c
\end{aligned}
$$

(ii) Let $I=\int \log (x+1) d x=\int \log (x+1) \cdot 1 d x$
$=\log (x+1) \cdot x-\int \frac{1}{x+1} \cdot x d x$
(b) Required probability $=P(A)=P\left(E_{1}\right) P\left(A / E_{1}\right)+$

$$
\begin{array}{ll}
=\frac{4}{10} \times \frac{45}{100}+\frac{4}{10} \times \frac{60}{100}+\frac{2}{10} \times \frac{35}{100}=\frac{490}{1000}=0.49 & =x \log (x+1)-\int \frac{x+1}{x+1} d x+\int \frac{1}{x+1} d x \\
\end{array}
$$

Self Evaluation Sheet

Once you complete SQP-4, check your answers with the given solutions and fill your marks in the marks obtained column according to the marking scheme. Performance Analysis Table given at the bottom will help you to check your readiness.

Q. No.	Chapter	Marks Per Question	Marks Obtained
1	Integrals	2	
2	Differential Equations / Differential Equations	2	
3	Three Dimensional Geometry	2	
4	Probability	2	
5	Three Dimensional Geometry	2	
6	Probability	2	
7	Integrals / Integrals	3	
8	Differential Equations	3	
9	Vector Algebra	3	
10	Three Dimensional Geometry / Three Dimensional Geometry	3	
11	Application of Integrals	4	
12	Three Dimensional Geometry	4	
13	Probability / Probability	4	
14	Integrals	2×2	
Total		40
		Percentage\%

Performance Analysis Table

If your marks is			> You are done! Keep on revising to maintain the position.
(*)	> 90\%	TREMENDOUS!	
(-)	81-90\%	EXCELLENT!	> You have to take only one more step to reach the top of the ladder. Practise more.
($)$	71-80\%	VERY GOOD!	$>$ Alittle bit of more effort is required to reach the 'Excellent' bench mark.
(-)	61-70\%	GOOD!	> Revise thoroughly and strengthen your concepts.
\because	51-60\%	FAIR PERFORMANCE!	> Need to work hard to get through this stage.
(ٌ)	40-50\%	AVERAGE!	> Try hard to boost your average score.

